Квантовое число l описывает. Квантовые числа и их физический смысл

Первое квантовое число n называется главным квантовым числом, оно может принимать целые значения от 1 до бесконечности. В атоме водорода это число характеризует энергию электрона (в атомных единицах):

Е(n) = -ZR/(2∙n 2),

где Z – заряд ядра, R=109678,76 см -1 – постоянная Ридберга.

Второе квантовое число l называется орбитальным числом. При определенном значении n оно может принимать целые значения от 0 до (n-1). Число l определяет одно из возможных значений орбитального момента количества движения электрона в атоме. Число l определяет форму орбитали. Каждому значению l сопоставляют букву (спектроскопические обозначения):

При обозначении состояния электрона (или орбитали) главное квантовое число пишут перед символом орбитального квантового числа в виде формулы: nl . Например:

4s n =4 и l =0, т.е. электронное облако имеет форму шара;

2p означает электрон, у которого n =2и l =1 (электронное облако имеет форму гантели) и т.д.

Третье квантовое число m l характеризует пространственне расположение орбиталей. Оно называется магнитным квантовым числом и определяет величину проекции орбитального момента количества движения на выделенное направление (обычно ось z). m l принимает целые значения от –l до +l. Число различных значений m l при определенном значении l равно N=(2l +1).

s-cостоянию электрона отвечает одна орбиталь

p-cостоянию электрона отвечает три орбитали

d-cостоянию электрона отвечает пять орбиталей

f-cостоянию электрона отвечает семь орбиталей

Таким образом орбиталь характеризуется определенным набором трех квантовых чисел: n, l, m.

Общее число орбиталей данного энергетического уровня равноN=n 2 .

При исследовании свойств электрона возникла необходимость ввести четвертое квантовое число , которое было названо спиновым квантовым числом m s .

Спин электрона характеризует вращение электрона вокруг собственной оси. Это вращение может происходить по часовой стрелке, или против неё относительно орбиты электрона. В зависимости от этого m s может принимать одно из двух значениий:

Спин электрона характеризует собственный вращательный момент электрона. В атоме водорода спиновый вращательный момент электрона добавляется к орбитальному моменту электрона.

Согласно принципу исключения Паули (швейцарский физик, 1925 год): никакие два электрона в атоме не могут иметь одинаковые наборы четырех квантовых чисел. Это значит, что если 2 электрона в атоме имеют одни и те же значения n, l и m l , то они должны иметь разные значения m s . Их спины должны быть направлены в разные стороны. На каждой орбитали могут максимально находится 2 электрона с противоположно направленными спинами.


Следствие из закона Паули: максимальное число электронов на уровне равно удвоенному значению квадрата главного квантового числа

Порядок заполнения орбиталей данного подслоя подчиняется правилу Хунда: Суммарное спиновое число электронов данного подслоя должно быть максимальным.

Иными словами, орбитали данного подслоя заполняется сначала по одному электрону, затем по второму электрону. Электроны с противоположными спинами на одной орбитали образуют двухэлектронное облако и их суммарный спин равен нулю.

– целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему. Набор квантовых чисел, исчерпывающе описывающих микросистему, называют полным. Так состояние электрона в атоме водорода определяется четырьмя квантовыми числами: главным квантовым числом n (может принимать значения 1, 2, 3, …), определяющим энергию Е n электрона (Е n = -13.6/n 2 эВ); орбитальным квантовым числом l = 0, 1, 2, …, n – 1, определяющим величину L орбитального момента количества движения электрона (L = ћ[l (l + 1)] 1/2); магнитным квантовым числом m < ± l , определяющим направление вектора орбитального момента; и квантовым числом m s = ± 1/2, определяющим направление вектора спина электрона.

Основные квантовые числа

Главное квантовое число: n = 1, 2, … .
Квантовое число полного углового момента. j никогда не бывает
отрицательным и может быть целым (включая ноль) или полуцелым
в зависимости от свойств рассматриваемой системы. Величина полного углового
момента J связана с j соотношением
J 2 = ћ 2 j(j + 1). = + ,
где и векторы орбитального и спинового угловых моментов.
Квантовое число орбитального углового момента l может принимать
только целые значения: l = 0, 1, 2, … ∞. Величина орбитального углового L
момента связана с l соотношением L 2 = ћ 2 l (l + 1).
Магнитное квантовое число. Проекция полного, орбитального или спинового
углового момента на выделенную ось (обычно ось z) равна mћ.
Для полного момента m j = j, j-1, j-2, …, - (j-1), - j. Для орбитального момента
m l = l , l -1, l -2, …, -(l -1), -l .
Для спинового момента электрона, протона, нейтрона, кварка m s = ±1/2
Квантовое число спинового углового момента s может быть либо целым,
либо полуцелым. s - неизменная характеристика частицы,
определяемая ее свойствами. Величина спинового момента S связана с s
соотношением S 2 = ћ 2 s(s + 1).
Пространственная четность. Она равна либо +1, либо -1 и
характеризует поведение системы при зеркальном отражении. P = (-1) l .

Существование сохраняющихся (неизменных во времени) физических величин для данной системы тесно связано со свойствами симметрии этой системы. Так, если изолированная система не изменяется при произвольных поворотах, то у неё сохраняется орбитальный момент количества движения. Это имеет место для атома водорода, в котором электрон движется в сферически симметричном кулоновском потенциале ядра и поэтому характеризуется неизменным квантовым числом l . Внешнее возмущение может нарушать симметрию системы, что приводит к изменению самих квантовых чисел. Фотон, поглощенный атомом водорода, может “перебросить” электрон на другую орбиту с другими значениями квантовых чисел.
Помимо квантовых чисел, отражающих пространственно-временную симметрию микросистемы, существенную роль у частиц играют так называемые внутренние квантовые числа. Ряд из них, такие как спин и электрический заряд, сохраняются во всех взаимодействиях, другие в некоторых взаимодействиях не сохраняются. Так кварковое квантовое число странность, сохраняющееся в сильном взаимодействии, не сохраняется в слабом взаимодействии, что отражает разную природу этих взаимодействий. Внутренним квантовым числом для кварков и глюонов является также цвет. Цвет кварков может принимать три значения, цвет глюонов – восемь.

Квантовые числа - это энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится. Квантовые числа необходимы для описания состояния каждого электрона в атоме. Всего 4-ре квантовых числа. Это: главное квантовое число - n , l , магнитное квантовое число - m l и спиновое квантовое число - m s .

Главное квантовое число - n .

Главное квантовое число - n - определяет энергетический уровень электрона, удалённость энергетического уровня от ядра и размер электронного облака. Главное квантовое число принимает любые целочисленные значения, начиная с n =1 (n =1,2,3,…) и соответствует номеру периода.

Орбитальное квантовое число - l .

Орбитальное квантовое число - l - определяет геометрическую форму атомной орбитали. Орбитальное квантовое число принимает любые целочисленные значения, начиная с l =0 (l =0,1,2,3,… n -1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. “Набор” таких орбиталей с одинаковыми значениями главного квантового числа называется энергетическим уровнем. Каждому значению орбитального квантового числа соответствует орбиталь особой формы. Значению орбитального квантового числа l =0 соответствует s -орбиталь (1-ин тип). Значению орбитального квантового числа l =1 соответствуют p -орбитали (3-ри типа). Значению орбитального квантового числа l =2 соответствуют d -орбитали (5-ть типов). Значению орбитального квантового числа l =3 соответствуют f -орбитали (7-мь типов).

f-орбитали имеют ещё более сложную форму. Каждый тип орбитали - это объём пространства, в котором вероятность нахождения электрона - максимальна.

Магнитное квантовое число - ml.

Магнитное квантовое число - ml - определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Магнитное квантовое число принимает любые целочисленные значения от -l до +l, включая 0. Это означает, что для каждой формы орбитали существует 2l+1 энергетически равноценных ориентаций в пространстве - орбиталей.

Для s-орбитали:

l=0, m=0 - одна равноценная ориентация в пространстве (одна орбиталь).

Для p-орбитали:

l=1, m=-1,0,+1 - три равноценные ориентации в пространстве (три орбитали).

Для d-орбитали:

l=2, m=-2,-1,0,1,2 - пять равноценных ориентаций в пространстве (пять орбиталей).

Для f-орбитали:

l=3, m=-3,-2,-1,0,1,2,3 - семь равноценных ориентаций в пространстве (семь орбиталей).

Спиновое квантовое число - ms.

Спиновое квантовое число - ms - определяет магнитный момент, возникающий при вращении электрона вокруг своей оси. Спиновое квантовое число может принимать лишь два возможных значения +1/2 и -1/2. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона - спинам. Для обозначения электронов с различными спинами используются символы: 5 и 6 .

Строение электронной оболочки атома.

Дополнительная

Основная

1. Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия. М.; Медицина, 1991.

2. « Руководство к лабораторным занятиям по биоорганической химии.» Под редакцией Тюкавкиной Н.А., М.; Медицина 1991. 3. Потапов В.М. ,Татаринчик С.Н. Органическая химия.

М. « Химия « 1989.

1. ОвчинниковЮ.А. Биоорганическая химия. М.;

Просвещение, 1987

2. Райлс А., Смит К., Уорд Р. Основы органической химии

(для студентов биологических и медицинских специальностей.)

М.; Мир 1983

3. Морисон Р., Бойд Р. Органическая химия. М. Мир 1974

Основой современной теории строения атома являются законы и положения квантовой механики – раздела физики, изучающего движение микрообъектов (электронов, протонов и других частиц, которые имеют ничтожную массу).

Согласно квантово-механическим представлениям, движущимся микрообъектам присуща двойственная природа: они являются частицами, но имеют волной характер движения, т.е. микрообъекты обладают одновременно корпускулярными и волновыми свойствами.

Для описания движения микрочастиц используется вероятностный подход , т.е. определяется не их точное положение, а вероятность нахождения в той или иной области околоядерного пространства.

Состояние (в квантовой механике синоним слова «движение») электрона в атоме описывается с помощью квантово-механической модели - электронного облака. Электронное облако графически отражает вероятность пребывания электрона в каждом участке электронной орбитали. Под электронной орбиталью следует понимать область пространства, где с определенной долей вероятности (около 90-95%) возможно пребывание электрона. Электронная орбиталь каждого электрона в атоме называется атомной орбиталью (АО) , в молекуле – молекулярной орбиталью (МО) . Полное описание состояния электронного облака осуществляется с помощью уравнения Шредингера. Решение этого уравнения, т.е. математическое описание орбитали, возможно лишь при определенных дискретных (прерывных) значениях квантовых чисел

Орбитальное l (l n)

Магнитное квантовое число m ( m l)

Спиновое квантовое число S(m s)

Главное квантовое число (n) определяет основной запас энергии электрона, т.е. степень его удаления от ядра или размер электронного облака (орбитали). Оно принимает любые целочисленные значения, начиная с единицы. Для реально существующих атомов в основном состоянии n = 1÷7.

Состояние электрона, которое характеризуется определенным значением n, называется энергетическим уровнем электрона в атоме. Электроны, имеющие одинаковые значения n, образуют электронные слои (электронные оболочки ), которые можно обозначить и цифрами и буквами.



Значение n…………………………….1 2 3 4 5 6 7

Обозначение электронного слоя …….K L M N O P Q

Наименьшее значение энергии соответствует n = 1, и электроны с n = 1 образуют ближайший к ядру атома электронный слой, они более прочно связаны с ядром.

Орбитальное (побочное или азимутальное) квантовое число l определяет орбитальный момент количества движения электрона и характеризует форму электронного облака. Оно может принимать целочисленные значения от 0 до (п-1). Для реально существующих атомов в основном состоянии l принимает значение 0,1,2 и 3.

Каждому значению l соответствует орбиталь особой формы. При l =0 атомная орбиталь, независимо от значения главного квантового числа, имеет сферическую форму (S-орбиталь). Значению l=1 соответствует атомная орбиталь, имеющая форму гантели (p- орбиталь). Более сложные формы у d- и f-орбиталей (l =2, l =3).

Каждому n соответствует определенное число значений орбитального квантового числа, т.е. энергетический уровень представляет собой совокупность энергетических подуровней. Число энергетических подуровней каждого электронного слоя равно номеру слоя, т.е. значению главного квантового числа. Так первому энергетическому уровню (n=1) соответствуют один подуровень-s; второму (n=2) – два подуровня s и p; третьему (n=3) – три подуровня s, p, d; четвертому (n=4) – четыре подуровня s, p, d, f.

Таким образом, энергетический подуровень – это состояние электрона в атоме, которое характеризуется определенным набором квантовых чисел n и l. Такое состояние электрона, соответствующее определённым значениям n и l (тип орбитали), записывается в виде сочетания цифрового обозначения n и буквенного l , например 4p (n = 4; l = 1); 5d (n = 5; l = 2).

Таблица 1

Соответствие обозначений орбитального квантового числа и подуровня

Магнитное квантовое число определяет значение проекции орбитального момента количества движения электрона на произвольно выделенную ось, т.е. характеризует пространственную ориентацию электронного облака. Оно принимает все целочисленные значения от –l до +l , в том числе значение 0.

Так, при l =0 m=0. Это значит, что S- орбиталь имеет одинаковую ориентацию относительно трёх осей координат. При l =1 m может принимать три значения: -1; 0; +1. Это значит, что могут быть три р-орбитали с ориентацией по координатным осям x, y, z.

Любому значению l соответствует (2l +1) значений магнитного квантового числа, т.е. (2l + 1) возможных расположений электронного облака данного типа в пространстве. S – состоянию соответствует 2×0 + 1 = 1 одна орбиталь, p- состоянию 2×1 + 1 = 3 три орбитали, d-состоянию 2×2 + 1 = 5 пять орбиталей, f-состоянию 2×3 + 1 = 7 семь орбиталей и т.д.

Состояние электрона в атоме, которое характеризуется определёнными значениями квантовых чисел n, l , m , т.е. определёнными размерами, формой и ориентацией в пространстве электронного облака, называется атомной электронной орбиталью .

Спиновое квантовое число S(m s) характеризует собственный механический момент электрона, связанный с вращением его вокруг своей оси. Оно имеет только два значения + и – .

Итак, подводя итоги изложенному выше, можно составить блок-схему «Квантовые числа» (таблица 2).

Таблица 2. Блок-схема «Квантовые числа»

Квантовое число Название Физический смысл Какие значения принимает
n(эн) главное квантовое число определяет общий запас энергии и размеры электронных орбиталей; характеризует энергетический уровень nÎN (теоретически) n 1 2 3 4 5 6 7 K L M N O P Q (практически)
l (эль) орбитальное (азимутальное) квантовое число определяет форму атомной орбитали характеризует энергетические подуровни l Î (теоретически) l 0 1 2 3 s p d f (практически)
m l (эм) магнитное квантовое число показывает ориентацию электронного облака в пространстве от –l до +l все целые числа, включая ноль при l =3 -3 -2 -1 0 +1 +2 +3

Поведение электронов в атомах подчиняется принципу запрета, В. Паули : в атоме не может быть двух электронов, у которых были бы одинаковыми все четыре квантовых числа.

Согласно принципу Паули, на одной орбитали, характеризующейся определёнными значениями квантовых чисел n, l и m может находиться либо один электрон, либо два, но различающихся значением s.

Орбиталь с двумя электронами, спины которых антипараллельны (квантовая ячейка), схематически можно изобразить так:

Максимально в одном электронном слое может быть 2n 2 электронов, так называемая емкость электронного слоя.

В таблице 3 приведены значения квантовых чисел для различных состояний электрона, а так же указано максимальное число электронов, которое может находиться на том или ином энергетическом уровне и подуровне в атоме.

Таблица 3.

Квантовое состояние электронов, емкость энергетических уровней и подуровней.

Расположение электронов по слоям и орбиталям изображают в виде электронных конфигураций . При этом электроны размещаются согласно принципу минимальной энергии : наиболее устойчивое состояние электрона в атоме соответствует минимально возможному значению его энергии.

Конкретная реализация этого принципа отражается с помощью принципа Паули (см. стр. 8), правила Хунда, а также правила Клечковского.

Правило Хунда: в пределах энергетического подуровня электроны располагаются так, чтобы их суммарный спин был максимальный .

Правило Клечковского : орбитали заполняются электронами в порядке возрастания их энергии, которая характеризуется суммой (n + l). При этом, если сумма (n + l) двух разных орбиталей одинакова, то раньше заполняется орбиталь , у которой главное квантовое число меньше.

Последовательность заполнения электронных энергетических подуровней в атоме смотрите в таблице 4.

Таблица 4.

Порядок заполнения орбиталей по сумме главного и побочного квантовых чисел (n + l) .

n l n+l Орбиталь Порядок заполнения
1+0=1 1s
2+0=2 2+1=3 2s 2p
3+0=3 3+1=4 3+2=5 3s 3p 3d
4+0=4 4+1=5 4+2=6 4+3=7 4s 4p 4d 4f
5+0=5 5+1=6 5+2=7 5+3=8 5s 5p 5d 5f
6+0=6 6+1=7 6+2=8 6+3=9 6s 6p 6d 6f
7+0=7 7+1=8 7s 7p

Многое в квантовой механике остается за гранью понимания, многое кажется фантастичным. То же относится и к квантовым числам, природа которых загадочна и сегодня. В статье рассказывается о понятии, видах и общих принципах работы с ними.

Общая характеристика

Целые или полуцелые квантовые числа у физических величин определяют всевозможные дискретные значения, характеризующие системы квантов (молекулу, атом, ядро) и элементарные частицы. Их применение тесным образом связано с существованием постоянной Планка. Дискретность, протекающих в микромире процессов, отражают квантовые числа и их физический смысл. Впервые их ввели для того, чтобы описать закономерности спектров атома. Но физический смысл и дискретность отдельных величин были раскрыты только в квантовой механике.
Набор, который определяет исчерпывающе состояние этой системы, получил название полного. Все состояния, отвечающие за возможные значения из такого набора, образуют полную систему состояний. Квантовые числа в химии со степенями свободы электрона определяют его в трех пространственных координатах и внутренней степенью свободы — спином.

Конфигурации электронов а атомах

В атоме располагаются ядро и электроны, между которыми действуют силы электростатической природы. Энергия будет увеличиваться по мере того, как уменьшается расстояние между ядром и электроном. Считается, что будет равна нулю в случае, если он удален от ядра бесконечно. Такое состояние используется как начало отсчета. Таким образом определяется относительная энергия электрона.

Электронная оболочка, является набором Принадлежность к одному из них выражается главным квантовым числом n.

Главное число

Оно относится к определенному уровню энергии с набором орбиталей, у которых схожие значения, состоящие из n= 1, 2, 3, 4, 5… Когда электрон переходит с одной на другую ступень, изменяется Следует учитывать, что не все уровни наполнены электронами. При заполнении оболочки атома, реализуется принцип наименьшей энергии. Его состояние в этом случае называют невозбужденным или основным.

Орбитальные числа

В каждом уровне имеются орбитали. Те из них, у которых сходная энергия, образуют подуровень. Такое отнесение производится с помощью орбитального (или как его еще называют - побочного) квантового числа l, которое принимает значения целых чисел от нуля и до n - 1. Так электрон, имеющий главное и орбитальное квантовые числа n и l, может равняться, начиная l = 0 и заканчивая l = n - 1.

Это показывает характер движения соответствующих подуровня и уровня энергии. При l = 0 и любом значении n, электронное облако будет иметь форму сферы. Ее радиус будет прямо пропорционален n. При l = 1 электронное облако примет форму бесконечности или восьмерки. Чем больше значение l, тем форма будет становиться сложнее, а энергия электрона — возрастать.

Магнитные числа

Ml является проекцией орбитального (побочного) на то или иное направление магнитного поля. Оно показывает пространственную ориентацию тех орбиталей, у которых число l одинаковое. Ml может иметь различные значения 2l + 1, от -l до +l.
Другое магнитное квантовое число называется спином — ms, который является собственным моментом числа движения. Чтобы понять это, можно вообразить вращение электрона как бы вокруг собственной оси. Ms может равняться -1/2, +1/2, 1.
Вообще для любого электрона абсолютное значение спина s = 1/2, а ms означает его проекцию на ось.


Принцип Паули: в атоме не может находиться двух электронов с 4-мя аналогичными квантовыми числами. Хотя бы одно из них должно быть отличным.
Правило составления формул атомов.
  1. Принцип минимальной энергии. По нему сначала заполняются уровни и подуровни, которые расположены ближе к ядру, по правилам Клечковского.
  2. Положение элемента указывает на то, как распределены электроны по энергетическим уровням и подуровням:
  • номер совпадает с зарядом атома и количеством его электронов;
  • периодический номер соответствует числу уровней энергии;
  • групповой номер совпадает с количеством в атоме;
  • подгруппа показывает их распределение.

Элементарные частицы и ядра

Квантовые числа в физике являются их внутренними характеристиками, которые определяют взаимодействия и закономерности превращений. Кроме спина s, это электрический заряд Q, который у всех элементарных частиц равен нулю или целому числу, отрицательному или положительному; барионный заряд В (в частице — ноль или единица, в античастице — ноль или минус один); лептонные заряды, где Le и Lm равны нулю, единице, а в античастице — нулю и минус единице; изотопический спин с целым или полуцелым числом; странность S и другие. Все эти квантовые числа применяются как к элементарным частицам, так и к атомным ядрам.
В широком смысле слова их называют физическими величинами, которые определяют движение частицы или системы и которые сохраняются. Однако совсем необязательно, что они принадлежат дискретному спектру всевозможных значений.