Платежная матрица игры m×n. Платежная матрица. Нижняя и верхняя цена игры

Факторы, влияющие на процесс принятия управленческих решений имеют важное значение. Процесс управления – деятельность объединенных в определенную систему субъектов управления, направленная на достижение целей фирмы путем реализации определенных функций с использованием методов управления.

Методы принятия решений разнообразны. При принятии решения вне зависимости от применяемых моделей существуют некоторые правила принятия решений. Правило принятия решения – это критерий, по которому выносится суждение об оптимальности данного конкретного исхода. Существует два типа правил. Один не использует численные значения вероятных исходов, второй – использует данные значения.

К первому типу относятся следующие правила принятия решений:

1. Максимаксное решение – это решение, при котором принимается решение по максимизации максимально возможных доходов. Данный метод очень оптимистичен, то есть не учитывает возможные потери и, следовательно, самый рискованный.

2. Максиминное решение – это решение, при котором максимизируется минимально возможный доход. Данный метод в большей степени учитывает отрицательные моменты различных исходов и является более осторожным подходом к принятию решений.

3. Минимаксное решение – это решение, при котором минимизируются максимальные потери. Это наиболее осторожный подход к принятию решений и наиболее учитывающий все возможные риски. Под потерями здесь учитываются не только реальные потери, но и упущенные возможности.

4. Критерий Гурвича. Данный критерий является компромиссом между максиминным и максимаксным решениями и является одним из самых оптимальных.

Ко второму типу принятия решений относятся решения, при которых кроме самих возможных доходов и потерь учитываются вероятности возникновения каждого исхода. К данному типу принятия решений относятся, например, правило максимальной вероятности и правило оптимизации математического ожидания. При данных методах обычно составляется таблица доходов, в которой указываются все возможные варианты доходов и вероятности их наступления. При использовании правила максимальной вероятности соответственно выбирается по одному из правил первого типа один из исходов, имеющий максимальную вероятность.

При использовании правила оптимизации математических ожиданий, высчитываются математические ожидания для доходов или потерь и затем выбирается оптимальный вариант.

Так как значения вероятностей со временем изменяются, при применении правил второго типа обычно используется проверка правил на чувствительность к изменениям вероятностей исходов.

Кроме того, для определения отношения к риску используется понятие полезности. То есть для каждого возможного исхода кроме вероятности рассчитывается полезность данного исхода, которая также учитывается при принятии решений.

В дополнение к моделированию, имеется ряд методов, способных оказать помощь руководителю в поиске объективно обоснованного решения по выбору из нескольких альтернатив той, которая в наибольшей мере способствует достижению целей.

Для принятия оптимальных решений применяются следующие методы:

ü платежная матрица;

ü дерево решений;

ü методы прогнозирования.

Платежная матрица . Суть каждого принимаемого руководством решения – выбор наилучшей из нескольких альтернатив по конкретным установленным заранее критериям. Платежная матрица – это один из методов статистической теории решений, метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целей. Платеж представляет собой денежное вознаграждение или полезность, являющиеся следствием конкретной стратегии в сочетании с конкретными обстоятельствами. Если платежи представить в форме таблицы (или матрицы), мы получаем платежную матрицу. Слова «в сочетании с конкретными обстоятельствами» очень важны, чтобы понять, когда можно использовать платежную матрицу и оценить, когда решение, принятое на ее основе, скорее всего будет надежным. В самом общем виде матрица означает, что платеж зависит от определенных событий, которые фактически совершаются. Если такое событие или состояние природы не случается на деле, платеж неизбежно будет иным. В целом платежная матрица полезна, когда:

1) имеется разумно ограниченное число альтернатив или вариантов стратегии для выбора между ними;

2) то, что может случиться, с полной определенностью не известно;

3) результаты принятого решения зависят от того, какая именно выбрана альтернатива и какие события в действительности имеют место.

Кроме того, руководитель должен располагать возможностью объективной оценки вероятности релевантных событий и расчета ожидаемого значения такой вероятности. Руководитель редко имеет полную определенность, но также редко он действует в условиях полной неопределенности. Почти во всех случаях принятия решений руководителю приходится оценивать вероятность или возможность события. Вероятность можно определить объективно, как поступает игрок в рулетку, ставя на нечетные номера. Выбор ее значения может опираться на прошлые тенденции или субъективную оценку руководителя, который исходит из собственного опыта действий в подобных ситуациях.

Многие допущения, из которых исходит руководитель, относятся к условиям в будущем, над которыми руководитель почти не имеет никакого контроля. Однако такого рода допущения необходимы для многих операций планирования. Ясно, что чем лучше руководитель сможет предсказать внешние и внутренние условия применительно к будущему, тем выше шансы на составление осуществимых планов.

Используя дерево решений, руководитель может рассчитать результат каждой альтернативы и выбрать наилучшую последовательность действий. Результат альтернативы рассчитывается путем умножения ожидаемого результата на вероятность и последующим суммированием таких же произведений, находящихся правее на дереве решений.

Дерево решений – это схематическое представление проблемы принятия решений. Как и платежная матрица, дерево решений дает руководителю возможность учесть различные направления действий, соотнести с ними финансовые результаты, скорректировать их в соответствии с приписанной им вероятностью, а затем сравнить альтернативы. Концепция ожидаемого значения является неотъемлемой частью метода дерева решений (рис.3.1).

Рис. 3.1. Дерево принятия решений

Дерево решений можно строить под сложные ситуации, когда результаты одного решения влияют на последующие решения. Таким образом, дерево решений – это полезный инструмент для принятия последовательных решений.

  • Общие основы менеджмента
    • ДИДАКТИЧЕСКИЙ ПЛАН
    • ЛИТЕРАТУРА
    • Перечень умений
    • Определение организации. Необходимость управления
    • Суть управленческой деятельности. Роль руководителя и управленческие функции. Уровни управления
    • Суть и назначение основных функций управления. Определение менеджмента и его основные цели
    • Эволюция управления как научной дисциплины. Подходы к управлению на основе выделения различных школ: системный, процессный и ситуационный подходы. Внешнее окружение организации
    • Коммуникации в управлении: понятие и процесс коммуникации
    • Групповая динамика и руководство: группы и их значимость; эффективность коллективной работы. Лидерство, власть и влияние: соотношение лидерства и власти. Процесс коммуникаций и эффективность управления
    • Понятие «побуждение» и «вознаграждение» относятся к способам мотивации персонала. Современная технология в процессах коммуникаций с использованием понятий “побуждение” и “вознаграждение” предполагает использование традиционной базы и современных методов,
    • Организация труда на предприятиях связи: формирование трудовых ресурсов; управление кадрами в условиях сокращения численности занятых. Нормирование труда
    • Виды решений. Принятие решений: модели и процесс принятия управленческих решений

Лекция 9. Понятие об игровых моделях. Платежная матрица.

§ 6 ЭЛЕМЕНТЫ ТЕОРИИ ИГР

6.1 Понятие об игровых моделях.

Математи­ческая модель конфликтной ситуации называется игрой , стороны, участвующие в конфликте, – игроками, а исход конфликта – выигрышем .

Для каждой формализованной игры вводятся правила , т.е. система условий, определяющая: 1) варианты действий игро­ков; 2) объем информации каждого игрока о поведении партне­ров; 3) выигрыш, к которому приводит каждая совокупность дей­ствий. Как правило, выигрыш (или проигрыш) может быть задан количественно; например, можно оценить проигрыш нулем, выигрыш – единицей, а ничью – 1/2. Количественная оценка результатов игры называется платежом .

Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Мы будем рас­сматривать только парные игры. В них участвуют два игрока А и В, интересы которых противоположны, а под игрой будем пони­мать ряд действий со стороны А и В.

Игра называется игрой с нулевой суммой, или антагонистиче­ ской , если выигрыш одного из игроков равен проигрышу другого, т.е. сумма выигрышей обеих сторон равна нулю. Для полного задания игры достаточно указать величину одно­го изних. Если обозначить а – выигрыш одного из игроков, b выигрыш другого, то для игры с нулевой суммой b = а , поэтому достаточно рассматривать, например а.

Выбор и осуществление одного из предусмотренных правила­ми действий называется ходом игрока. Ходы могут быть личными и случайными . Личный ход это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре). Набор возможных вариантов при каждом личном ходе регламентирован правилами игры и зависит от всей совокупности предшествующих ходов с обеих сторон.

Случайный ход это случайно выбранное действие (напри­мер, выбор карты из перетасованной колоды). Чтобы игра была математически определенной, правила игры должны для каждого случайного хода указывать рас­пределение вероятностей возможных исходов.

Некоторые игры могут состоять только из случайных ходов (так называемые чисто азартные игры) или только из личных ходов (шахматы, шашки). Большинство карточных игр принадлежит к играм смешанного типа, т. е. содержит как случайные, так и личные ходы. В дальнейшем мы будем рассматривать только личные ходы игроков.

Игры классифицируются не только по характеру ходов (личные, случайные), но и по характеру и по объему инфор­мации, доступной каждому игроку относительно действий другого. Особый класс игр составляют так называемые «игры с полной информацией». Игрой с полной информацией назы­вается игра, в которой каждый игрок при каждом личном ходе знает результаты всех предыдущих ходов,как личных, так и случайных. Примерами игр с полной информацией могут служить шахматы, шашки, а также известная игра «крестики и нолики». Большинство игр, имеющих практическое значение, не при­надлежит к классу игр с полной информацией, таккак неиз­вестность по поводу действий противника обычно является существенным элементом конфликтных ситуаций.

Одним из основных понятий теории игр является понятие стратегии .

Стратегией игрока называется совокупность правил, опреде­ляющих выбор его действия при каждом личном ходе в зависимо­сти от сложившейся ситуации. Обычно в процессе игры при каж­дом личном ходе игрок делает выбор в зависимости от конкрет­ной ситуации. Однако в принципе возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуа­цию). Это означает, что игрок выбрал определенную стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ). Игра называется конечной , если у каждого игрока имеется конечное число страте­гий, и бесконечной .– в противном случае.

Для того чтобы решить игру, или найти решение игры , следует для каждого игрока выбрать стратегию, которая удовле­творяет условию оптимальности , т.е. один из игроков должен по­лучать максимальный выигрыш, когда второй придерживается своей стратегии, В то же время второй игрок должен иметь минимальный проигрыш , если первый придерживается своей стратегии. Такие стратегии называются оптимальными . Оптимальные стратегии должны также удовлетворять условию устойчивости , т.е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре.

Если игра повторяется достаточно много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной пар­тии, а средний выигрыш (проигрыш) во всех партиях.

Целью теории игр является определение оптимальной стратегии для каждого игрока.

6.2. Платежная матрица. Нижняя и верхняя цена игры

Конечная игра, в которой игрок А имеет т стратегий, а игрок В – п стратегий, называется игрой .

Рассмотрим игру
двух игроковА и В («мы» и «противник»).

Пусть игрок А располагает т личными стратегиями, которые обозначим
. Пусть у игрокаВ имеется n личных стратегий, обозначим их
.

Пусть каждая сторона выбрала определенную стратегию; для нас это будет , для противника. В результате выбора игроками любой пары стратегийи(
) однозначно определяется исход игры, т.е. выигрышигрокаА (положительный или отрицательный) и проигрыш
игрокаВ.

Предположим, что значения известны для любой пары страте­гий (,). Матрица
,
, элементами которой являются выигрыши, соответствующие страте­гиям и , называется платежной матрицей или матрицей игры. Строки этой матрицы соот­ветствуют стратегиям игрока А, а столбцы – стратегиям игрока B . Эти стратегии называются чистыми.

Матрица игры
имеет вид:

Рассмотрим игру
с матрицей

и определим наилучшую среди стратегий
. Выбирая стратегию , игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий , для которой выигрыш для иг­рока А минимален (игрок В стремится "навредить" игроку A ).

Обозначим через наименьший выигрыш игрокаА при вы­боре им стратегии для всех возможных стратегий игрокаВ (наименьшее число в i -й строке платежной матрицы), т.е.

(1)

Среди всех чисел (
) выберем наибольшее:
.

Назовем
нижней ценой нгры, или максимальным выигрышем (максмином). Это гарантированный выигрыш игрока А при любой стратегии игрока В. Следовательно,

. (2)

Стратегия, соответствующая максимину, называется максиминной стратегией . Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А, выбирая стратегию , он учитывает макси­мально возможный при этом выигрыш для А. Обозначим

. (3)

Среди всех чисел выберем наименьшее

и назо­вем верхней ценой игры илиминимаксным выигрышем (минимаксом). Эго гарантированный проигрыш игрока В . Следова­тельно,

. (4)

Стратегия, соответствующая минимаксу, называется минимаксной стратегией.

Принцип, диктующий игрокам выбор наиболее "осторожных" минимаксной и максиминной стратегий, называется принципом минимакса . Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника.

Теорема. Нижняя цена игры всегда не превосходит верхней цены игры
.

Если верхняя и нижняя цены игры совпадают, то общее значе­ние верхней и нижней цены игры
называется чистой ценой игры, или ценой игры. Минимакс­ные стратегии, соответствующие цене игры, являются оптимальными стратегиями , а их совокупность – оптимальным решением или решением игры. В этом случае игрок А получает максимальный га­рантированный (не зависящий от поведения игрока В) выигрыш v , а игрок В добивается минимального гарантированного (вне зависи­мости от поведения игрока А) проигрыша v . Говорят, что решение игры обладает устойчивостью , т.е. если один из игроков придержи­вается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии.

Если один из игроков (например А) придерживается своей оптимальной стратегии, а другой игрок (В) будет любым способом отклоняться от своей оптимальной стра­тегии, то для игрока, допустившего отклонение, это никогда не может оказаться выгодным; такое отклонение игрока В может в лучшем случае оставить выигрыш неизменным. а в худшем случае – увеличить его.

Наоборот, если В придерживается своей оптимальной стратегии, а А отклоняется от своей, то это ни в коем случае не может быть выгодным для А.

Пара чистых стратегий и дает оптимальное решение игры тогда и только тогда, когда соответствующий ей элемент явля­ется одновременно наибольшим в своем столбце и наименьшим в своей строке. Такая ситуация, если она существует, называется седловой точкой. В геометрии точку на поверхности, обладающую свойством: одновременный минимум по одной координате и максимум по другой, называют седловой точкой, по аналогии этот термин применяют в теории игр.

Игра, для которой
,
называется игрой с седловой точкой. Элемент , обладающий этим свойством, седловой точкой матрицы.

Итак, для каждой игры с седловой точкой существует решение, определяющее пару оптимальных стратегий обеих сторон, отличающуюся следующими свойствами.

1) Если обе стороны придерживаются своих оптимальных стратегий, то средний выигрыш равен чистой цене игры v , одновременно являющейся ее нижней и верхней ценой.

2) Если одна из сторон придерживается своей оптимальной стратегии, а другая отклоняется от своей, то от этого отклоняющаяся сторона может только потерять и ни в коем случае не может увеличить свой выигрыш.

Класс игр, имеющих седловую точку, представляет боль­шой интерес как с теоретической, так и с практической точки зрения.

В теории игр доказывается, что, в частности, каждая игра с полной информацией имеет седловую точку, и, сле­довательно, каждая такая игра имеет решение, т. е. суще­ствует пара оптимальных стратегий той и другой стороны, дающая средний выигрыш, равный цене игры. Если игра с полной информацией состоит только из личных ходов, то при применении каждой стороной своей оптимальной стратегии она должна всегда кончаться вполне определенным исходом, а именно, выигрышем, в точности равным цене игры.

ПРАКТИЧЕСКАЯ РАБОТА №3

Модели теории игр

Понятие об игровых моделях

Теория игр занимается разработкой различного рода рекомендаций по принятию решений в условиях конфликтной ситуации. Формируя конфликтные ситуации математически, их можно представить как игру двух, трёх и более игроков, каждый из которых преследует цель максимизации своего выигрыша за счет другого игрока. Математическая модель конфликтной ситуации называется игрой , стороны, участвующие в конфликте, – игроками , а исход конфликта – выигрышем . Для каждой формализованной игры вводятся правила , т.е. система условий, определяющая:

1. варианты действий игроков;

2. объем информации каждого игрока о поведении партнеров;

3. выигрыш, к которому приводит каждая совокупность действий.

Как правило, выигрыш может быть задан количественно (например, проигрыш – 0, выигрыш – 1, ничья – ½). Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Игра называется игрой с нулевой суммой , если выигрыш одного из игроков равен проигрышу другого. Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными. Личный ход – сознательный выбор игроком одного из возможных действий (ход в шахматной игре), случайный ход – случайно выбранное действие (выбор карты из перетасованной колоды).

Стратегией игрока называется совокупность правил, определяющих выбор его действия при при каждом личном ходе в зависимости от сложившейся ситуации. Игра называется конечной , если у игрока имеется конечное число стратегий, и бесконечной – в противном случае.

Для того, чтобы решить игру, или найти решение игры , следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получить максимальный выигрыш , когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш , если первый придерживается своей стратегии. Такие стратегии называются оптимальными. Целью теории игр является определение оптимальной стратегии для каждого игрока . При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.

Платежная матрица. Нижняя и верхняя цена игры

Рассмотрим парную конечную игру. Пусть игрок А располагает m личными стратегиями, которые обозначим А 1 , А 2 ,…,А m . Пусть у игрока B имеется n личных стратегий, обозначим их B 1 , B 2 ,…,B n . Говорят, что игра имеет размерность m ´ n . В результате выбора игроками любой пары стратегий А i и B j однозначно определяется исход игры, т.е. выигрыш a ij игрока А (положительный или отрицательный) и проигрыш (-a ij ) игрока В . Матрица Р=(a ij) , элементами которой являются выигрыши, соответствующие стратегиям А i и B j , называется платежной матрицей или матрицей игры .

B j A i B 1 B 2 B n
A 1 a 11 a 12 a 1n
A 2 a 21 a 22 a 2n
A m a m1 a m 2 a mn

Пример – игра «Поиск»

Игрок А может спрятаться в убежище 1 – обозначим эту стратегию за А 1 или в убежище 2 – стратегия А 2 . Игрок В может искать первого игрока в убежище 1 –стратегия В 1 , либо в убежище 2 – стратегия В 2 . Если игрок А находится в убежище 1 и его там обнаруживает игрок В , т.е. осуществляется пара стратегий (А 1 ,В 1) , то игрок А платит штраф, т.е. a 11 =–1. Аналогично получаем a 22 =–1. Очевидно, что стратегии (А 1 ,В 2) и (А 2 ,В 1) дают игроку А выигрыш 1, поэтому a 12 =a 21 =1. Таким образом, получаем платежную матрицу

Рассмотрим игру m ´ n с матрицей Р=(a ij) и определим наилучшую среди стратегий игрока А . Выбирая стратегию А i , игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий В j , для которой выигрыш для игрока А минимален (игрок В стремится «навредить» игроку А ).

Обозначим через a i наименьший выигрыш игрока А при выборе им стратегии А i для всех возможных стратегий игрока В (наименьшее число в i -й строке платежной матрицы), т.е. .

Среди всех чисел a i выберем наибольшее: . Назовем a нижней ценой игры , или максимальным выигрышем (максимином ). Это гарантированный выигрыш игрока А при любой стратегии игрока В . Следовательно, .

Стратегия, соответствующая максимину, называется максиминной стратегией . Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А ; выбирая стратегию B j , он учитывает максимально возможный при этом выигрыш для A. Обозначим .

Среди всех чисел выберем наименьшее иназовем b верхней ценой игры , или минимаксным выигрышем (минимаксом ). Это гарантированный проигрыш игрока В при любой стратегии игрока А . Следовательно, .

Стратегия, соответствующая минимаксу, называется минимаксной стратегией . Принцип, диктующий игрокам выбор наиболее осторожных минимаксной и максиминной стратегий, называется принципом минимакса .

Статистические игры

Во многих задачах, приводящихся к игровым, неопределенность вызвана отсутствием информации об условиях, в которых осуществляется действие. Эти условия зависят не от сознательных действий другого игрока, а от объективной действительности, которую принято называть «природой». Такие игры называют играми с природой (статистическими играми).

Задача

После нескольких лет эксплуатации промышленное оборудование оказывается в одном из следующих состояний: В 1 – оборудование может использоваться в очередном году после профилактического ремонта; В 2 – для безаварийной работы оборудования в дальнейшем следует заменить отдельные его детали и узлы; В 3 – оборудование требует капитального ремонта или замены.

В зависимости от сложившейся ситуации В 1 ,В 2 ,В 3 руководство предприятия может принять такие решения: А 1 – отремонтировать оборудование силами заводских специалистов, что требует соответствующих затрат а 1 =6, а 2 =10, а 3 =15 ден.ед; А 2 – вызвать специальную бригаду ремонтников, расходы в этом случае составят b 1 =15, b 2 =9, b 3 =18 ден.ед; А 3 – заменить оборудование новым, реализовав устаревшее оборудование по его остаточной стоимости. Совокупные затраты в результаты этого мероприятия будут равны соответственно с 1 =13, с 2 =24, с 3 =12 ден.ед.

Задание

1. Придав описанной ситуации игровую схему, выявить ее участников, указать возможные чистые стратегии сторон.

2. Составить платежную матрицу, пояснив смысл элементов a ij матрицы (почему они отрицательные?).

3. Выяснить, какое решение о работе оборудования в предстоящем году целесообразно рекомендовать руководству предприятия, чтобы минимизировать потери при следующих предположениях: а) накопленный на предприятии опыт эксплуатации аналогичного оборудования показывает, что вероятности указанных состояний оборудования равны соответственно q 1 =0,15; q 2 =0,55; q 3 =0,3 (примените критерий Байеса); б) имеющийся опыт свидетельствует о том, что все три возможных состояния оборудования равновероятны (примените критерий Лапласа); в) о вероятности оборудования ничего определенного сказать нельзя (примените критерии Вальда, Сэвиджа, Гурвица). Значение параметра g=0,8 в критерии Гурвица задано.

Решение

1) Описанная ситуация представляет собой статистическую игру.

В качестве статистика выступает руководство предприятия, которое может принять одно из следующих решений: отремонтировать оборудование своими силами (стратегия А 1), вызвать ремонтников (стратегия А 2); заменить оборудование новым (стратегия А 3).

Второй играющей стороной – природой будем считать совокупность факторов, влияющих на состояние оборудования: оборудование может использоваться после профилактического ремонта (состояние В 1); нужно заменить отдельные узлы и детали оборудования (состояние В 2): потребуется капитальный ремонт или замена оборудования (состояние В 3).

2) Составим платежную матрицу игры:

Элемент платежной матрицы а ij показывает затраты руководства предприятия, если при выбранной стратегии А i оборудование окажется в состоянии В j . Элементы платежной матрицы отрицательны, так как при любой выбранной стратегии руководству предприятия придется нести расходы.

а) накопленный на предприятии опыт эксплуатации аналогично оборудования показывает, что вероятности состояний оборудования равны q 1 =0,15; q 2 =0,55; q 3 =0,3.

Платежную матрицу представим в виде:

Стратегии статистика, A i Состояния природы B j
B 1 B 2 B 3
A 1 -6 -10 -15 -10,9
A 2 -15 -9 -18 -12,6
A 3 -13 -24 -12 -18,75
q j 0,15 0,55 0,3

где , (i=1,3)

По критерию Байеса за оптимальную принимается та чистая стратегия А i , при которой максимизируется средний выигрыш статистика, т.е. обеспечивается =max .

Оптимальной стратегией по Байесу является стратегия А 1 .

б) имеющийся опыт свидетельствует о том, что все три возможных состояния оборудования равновероятны, т.е. = 1/3.

Средние выигрыши равны:

1/3*(-6-10-15) = -31/3 » -10,33;

1/3*(-15-9-18) = -42/3 = -14;

1/3*(-13-24-12) = -49/3 » -16,33.

Оптимальной стратегией по Лапласу является стратегия А 1 .

в) о вероятностях оборудования нельзя сказать ничего определенного.

По критерию Вальда за оптимальную принимается чистая стратегия, которая в наихудших условиях гарантирует максимальный выигрыш, т.е.

.

= max (-15, -18, -24) = -15.

Таким образом, оптимальной является стратегия А 1 .

Построим матрицу рисков , где .

В данной матрице элементы величины α i и β j соответственно минимальные значения элементов a ij по строкам и максимальные по столбцам.

Построение платежной матрицы – наиболее трудоемкий этап подготовки принятия решения. Ошибки в платежной матрице не могут быть компенсированы никакими вычислительными методами и приведут к неверному итоговому результату.

Возможен и другой способ задания матрицы игры с природой – в виде матрицы рисков R, или матрицы потерь (упущенных возможностей) . Величина риска – это размер платы за отсутствие информации о состоянии среды. Матрица R может быть построена непосредственно из условий задачи или на основе матрицы выигрышей.

Риском r ij игрока А при использовании им стратегии А i , а игроком В – стратегии В j называют разность между выигрышем, который игрок А получил бы, если бы знал, что игрок В выберет стратегию В j , и выигрышем, который игрок получил бы, не имея этой информации. Зная стратегию игрока В, игрок А выбирает вариант действий, при котором его выигрыш максимален, то есть r ij = β j – a ij , где при заданномj .

Рассмотрим способ построения матрицы рисков на примере (табл. 8.2, 8.3).

Таблица 8.2

Пример платежной матрицы

α i

β j

Согласно выведенным определениям r ij и β j получаем матрицу рисков.

Таблица 8.3

Матрица рисков

Независимо от вида матрицы игры требуется выбрать такую стратегию игрока, которая была бы наиболее выгодной по сравнению с другими.

В условиях неопределенности для определения наилучших решений могут быть использованы следующие критерии:

1. Критерий максимакса (критерий крайнего оптимизма) . Позволяет определить стратегию, максимизирующую выигрыш игрока (М ):

.

Очевидно, что для матрицы выигрышей, представленной в табл. 8.2 , наилучшим решением будет А 1 , при котором достигается максимальный выигрыш – 9.

Следует отметить, что ситуации, требующие применения такого критерия, в экономике в общем нередки, и пользуются им не только безоглядные оптимисты, но и игроки, поставленные в безвыходное положение, когда они вынуждены руководствоваться принципом "или пан, или пропал".

2. Критерий Вальда (критерий максимина) . Данный критерий позволяет максимизировать минимально возможный выигрыш:

.

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3
.

Соответственно W = 3, что соответствует стратегии А 2 игрока А.

Особенность максиминного критерия в том, что он ориентирует на выбор наиболее безопасного варианта. Это своего рода критерий для осторожного человека. Им главным образом следует пользоваться в тех случаях, когда действия направлены на удовлетворение жизненно важных потребностей и необходимо обеспечить успех при любых возможных условиях. Он имеет в качестве недостатка неубедительность использования в разных условиях окружающей обстановки. Однако в тех случаях, когда действия направлены на удовлетворение жизненно важных потребностей и необходимо обеспечить успех при любых возможных условиях, максиминный критерий в наибольшей степени соответствует существу задачи. Так или иначе, выбор такой стратегии определяется отношением игрока к риску.

3. Критерий Сэвиджа (критерий минимакса) . Позволяет минимизировать максимальные потери. Выбор стратегии аналогичен выбору стратегии по принципу Вальда с тем отличием, что игрок руководствуется не матрицей выигрыша, а матрицей рисков:

Для матрицы рисков, представленной в табл. 8.3,

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3
.

Соответственно, S = 4, что соответствует стратегии А 1 игрока А.

Слабость данного критерия заключается в допущении, что результаты выбираются разумным противником, интересы которого прямо противоположны нашим собственным, то есть мы полагаем следующее: если применяемые правила принятия решений позволяют противнику извлечь какое-либо преимущество, то он обязательно это сделает. Однако если исключить вполне определенные условия конкурентной борьбы, то столь пессимистические допущения нельзя оправдать. Действительно, ведь результаты могут выбираться нерациональным "противником", а цели "противника" не обязательно полностью противоречат нашим собственным.

    Критерий Гурвица (критерий обобщенного максимина или критерий пессимизма – оптимизма) . Был предложен с учетом недостатков указанных выше критериев. При выборе решения он рекомендует руководствоваться неким средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. Критерий имеет следующий вид:

,

где р – коэффициент пессимизма (
).

При р = 0 критерий Гурвица совпадает с максимаксным критерием, а при р = 1 – с критерием Вальда.

Покажем процедуру применения данного критерия для платежной матрицы при р = 0,4:

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3 .

Тогда Н А = 6, что соответствует стратегии А 2 (для сравнения, при р = 0,3, оптимальной будет являться стратегия А 1).

Применительно к матрице рисков критерий Гурвица выглядит следующим образом:

,

    Критерий Лапласа . В его основу положено предположение, что поскольку о вероятностях получения того или иного результата ничего неизвестно, то можно полагать их равновероятными. Поэтому оценка каждой i -й стратегии производится как среднее арифметическое в i -й строке (L):

Для представленной выше платежной матрицы:

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3
.

Соответственно, L = 4,75, что соответствует стратегии А 1 .

В случае, когда по принятому критерию рекомендуется к использованию несколько стратегий, выбор между ними может делаться по дополнительному критерию. Например, в расчет могут приниматься средние квадратичные отклонения от средних выигрышей при каждой стратегии.

Попытка сформулировать критерий оценки возможных решений в условиях неопределенности отражает стремление сделать более наглядными преимущества и недостатки каждого варианта действий в различной обстановке.

Как видно из представленных выше расчетов, использование различных критериев при решении одной задачи, как правило, приводит к получению неодинаковых результатов. Существует два подхода к выбору критериев для решения задач в условиях неопределенности. Первый из них – это разработка новых критериев или требований для выбора критерия принятия решения. Второй путь заключается в использовании любой, пусть самой скудной, информации о вероятностях реализации различных условий внешней среды (различных результатов, получаемых при реализации той или иной стратегии) или в проведении экспериментов с целью получения оценок этих вероятностей. Тем самым неопределенная задача становится вероятностной.

Оба пути трудоемки и, как правило, трудновыполнимы на практике, однако предпочтительнее все же второй путь. Первый путь приводит к поискам новых критериев для выбора лучшего из числа известных, затем – к поискам критериев для выбора из числа рассматриваемых и т. д. Иными словами, не существует критерия принятия решения, не основанного на оценках вероятностей, который удовлетворял бы определенным обоснованным требованиям "хорошего" критерия.

Ни один из предложенных методов выбора решений не является универсальным, способным удовлетворить любого ЛПР. Люди по-разному относятся к элементам риска, содержащимся в каждом решении. Один склонен рисковать в надежде добиться большего успеха, другой предпочитает всегда действовать осторожно. Разумеется, размеры риска, допускаемые в решении, зависят не только от характера ЛПР, но и от содержания целей.

Ученые считают, что правило минимаксных (осторожных) решений интуитивно применяется большинством руководителей в повседневной практике, в то время как стремление к максимуму ожидаемых результатов могло бы быть более эффективным для организации. Так, многие руководители предпочитают иметь на складах предприятия некоторые излишки запасов материалов, чем подвергаться риску возникновения простоев в производстве из-за перебоев в поставках.

В платежной матрице игры существует элемент, являющийся одновременно минимальным в своей строке и максимальным в своем столбце. Такой элемент называют седловой точкой. Седловая точка в игре имеет место тогда, когда наблюдается равенство α i = β j . При этом значение α i = β j V называют чистой ценой игры. В этом случае решение игры (совокупность оптимальных стратегий игроков) обладает следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии. Поэтому для игры с седловой точкой минимаксные стратегии обладают устойчивостью.

В целом теория игр может рассматриваться как своеобразный методический инструмент для анализа ситуаций, характеризующихся конфликтом сторон и неопределенностью.

Однако в связи с отмеченными выше существенными ограничениями, лежащими в основе формализации игры, далеко не все реальные ситуации допускают такую формализацию, а полученные выводы в реальных ситуациях выглядят зачастую банальными (например, направить все ресурсы на наиболее эффективные операции) и могут требовать корректировки с позиций здравого смысла, диверсификации видов деятельности и т.д. Это снижает практическую эффективность игрового подхода в реальной деятельности.

Практически любой метод принятия решений , используемый в управлении, можно технически рассматривать как разновидность моделирования. Однако по традиции термин модель обычно относится лишь к методам общего характера, только что описанным выше, а также к многочисленным их специфическим разновидностям. В дополнение к моделированию, имеется ряд методов, способных оказать помощь руководителю в поиске объективно обоснованного решения по выбору из нескольких альтернатив той, которая в наибольшей мере способствует достижению целей. Под заголовок данного раздела попадают платежная матрица и дерево решений , описанные ниже. Для облегчения использования этих методов и вообще повышения качества принимаемых решений руководство пользуется прогнозированием. Наиболее распространенные методы прогнозирования рассмотрены в следующем разделе. Наша цель заключается в том, чтобы помочь понять суть этих инструментов, а не научить ими пользоваться.  


Суть каждого принимаемого руководством решения - выбор наилучшей из нескольких альтернатив по конкретным установленным заранее критериям. (Если вы захотите вспомнить рассмотрение ограничений и критериев для принятия решений , обратитесь к гл. 6). Платежная матрица - это один из методов статистической теории решений , метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целей.  

В целом платежная матрица полезна, когда  

Вероятность прямо влияет на определение ожидаемого значения - центральной концепции платежной матрицы. Ожидаемое значение альтернативы или варианта стратегии - это сумма возможных значений, умноженных на соответствующие вероятности. К примеру, если вы считаете, что вложение средств (как стратегия действий) в киоск для торговли мороженым с вероятностью 0,5 обеспечит вам годовую прибыль 5000 долл., с вероятностью 0,2 - 10 000 долл. и с вероятностью 0,3 - 3000 долл., то ожидаемое значение составит  

В табл. 12.2 сведены результаты различных возможных решений по ценообразованию. Решая, какую цену установить, две фирмы играют в некооперативную игру - каждая фирма самостоятельно решает, как ей лучше поступить, принимая в расчет своего конкурента. Табл. 12.2 называют платежной матрицей для этой игры, так как она показывает прибыль каждой фирмы, если известны ее решение и решение ее конкурента. Например, верхний левый угол платежной матрицы говорит нам, что, если обе фирмы назначат цену 4 долл., каждая фирма получит прибыль 12 долл. Верхний правый угол показывает, что, если фирма 1 назначает цену в 4 долл., а фирма 2 - в 6 долл., фирма 1 получает прибыль в 20 долл., а фирма 2 - в 4 долл.  

ТАБЛИЦА 12.2 Платежная матрица для игры по протезированию цен  

Данная платежная матрица может прояснить ответ на первоначальный вопрос почему фирмы не действуют сообща и тем самым не получают более высокие прибыли, даже если они и имеют возможность договориться В данном случае договор означает, что обе фирмы назначат цену в 6 долл. вместо 4 долл. и получат при этом прибыль 16 долл. вместо 12 долл. Проблема заключается в том, что каждая фирма всегда старается выиграть, назначая цену в 4 долл., независимо от того, как поступает ее конкурент. Как показывает платежная матрица,  

Рассматривая предприятие (Р,) и природу (Р2) в качестве двух игроков, получим так называемую платежную матрицу следующего вида (табл. 6.11)  

Из платежной матрицы видно, что игрок Р, (предприятие) никогда не получит дохода меньше 6800. Но если погодные условия совпадут с выбранной стратегией, то выручка (выигрыш) предприятия будет составлять 26000 или 28400. Если игрок Р, будет постоянно применять стратегию А, а игрок Р2 - стратегию Д, то выигрыш снизится до 6800. То же самое произойдет, если игрок Р, будет постоянно применять стратегию В, а игрок Р2 -- стратегию С. Отсюда вывод, что наибольший доход предприятие обеспечит, если будет попеременно применять то стратегию А, то стратегию В. Такая стратегия называется смешанной, а ее элементы (А и В) - чистыми стратегиями.  

Рассматривая АО Силуэт и природу в качестве двух игроков /, и Р2, получим по итогам произведенных расчетов так называемую платежную матрицу следующего вида (с. 53).  

По данным платежной матрицы игрок Р1 (АО Силуэт) никогда не получит прибыль меньше 136 000 руб. Если погодные условия совпадут с выбранной стратегией, то прибыль АО (выигрыш) будет составлять 568 000 или 520 000 руб. Если игрок Р будет постоянно принимать стратегию А, а игрок Р2 - стратегию Д, то прибыль снизится до 136 000 руб. То же самое будет, если игрок Р постоянно принимает стратегию В, а игрок Р2 - страте-  

Пример. Суточный спрос на скоропортящийся продукт в тоннах выражается следующим распределением (спрос/вероятность) (0,0/0,2) (1,0/0,3) (2,0/0,4) (3,0/0,5). Пусть себестоимость тонны - 3 тыс. руб., продажная цена - 5 тыс. руб., прибыль за единицу- 2 тыс. руб. Магазин может держать запас в 0, 1,2 или 3 т. Положим, что дневной запас не может быть продан завтра, и остатки целиком списываются в убытки. Платежная матрица показана в табл. 7.2. Анализ с полной информацией приведен в табл. 7.3.  

Пусть торговое предприятие имеет т стратегий Т, Т,. .., Т, и имеется п возможных состояний природы Ль П2,. .., Пп. Так как природа не является заинтересованной стороной, исход любого сочетания поведения сторон можно оценить выигрышем Ъц первой стороны для каждой пары стратегий Т, и TIj. Все показатели игры заданы платежной матрицей йу.  

Пример. Предприятие планирует производство двух изделий А, Б с неопределенным спросом , предполагаемый уровень которого характеризуется двумя состояниями I, П. В зависимости от этих состояний прибыль предприятия различна и определяется платежной матрицей  

Требуется определить объемы производства каждого изделия, при котором предприятию гарантируется средняя величина при любом состоянии спроса . Решение. Проверка платежной матрицы на наличие седловой точки  

Пусть задана платежная матрица игры  

Условие игры обычно записывается в форме платежной матрицы, или матрицы игры (табл. 3.33).  

Пусть платежная матрица задана в качественных терминах. Данные  

Анализ платежных матриц позволяет сделать следующие выводы при неполной информации наилучший выбор - держать запас в 2 т с наибольшим значением прибыли 1,90 тыс. руб. Это лучшее, что вы можете сделать при ограниченной информации.  

В практике управления широко используются такие методы, как платежная матрица дерево целей или решений. Наиболее известным из них является метод дерева решений для сравнения и оценки выдвинутых альтернатив. Особенно данный метод полезен в ситуациях, когда менеджер имеет дело с неопределенностью. Этот метод дает общую картину решения выборы , риски и исходы, которые могут иметь место. Более того, данный метод помогает открыть новые альтернативы, которые ранее могли быть опущены по каким-то причинам.  

Приведенные выше данные платежной матрицы отражают оценку последствий разных вариантов действий. Дополнительно представлены некоторые предположения относительно вероятности тумана который скажется на самолето, но не на поезде) и ясной погоды. Мы видим, что вероятность ясной погоды в 10 рлз выше, чем ту лана. Далее, матрица показывает, что, действуя по первому варианту стратегии (самолет), если погода будет хорошей (9 шансов из 10), торговый агент по оценке продаст товаров на 4500 долл. (это и есть результат или последствия). Три других варианта последствий можно объяснить таким же образом, мы опускаем эти рассуждения.  

По словам Н. Пола Лумбы Платеж представляет собой денежное вознаграждение или полезность, являющиеся следствием конкретной стратегии в сочетании с конкретными обстоятельствами. Если платежи представить в форме таблицы (или матрицы), мы получаем платежную матрицу 24, как показано на рис. 8.4. Слова в сочетании с конкретными обстоятельствами очень важны, чтобы понять, когда можно использовать платежную матрицу и оценить, когда решение, принятое на ее основе, скорее всего будет надежным. В самом общем виде матрица означает, что платеж зависит от определенных событий, которые фактически свершаются. Если такое событие или состояние природы не случается на деле, платеж неизбежно будет иным.  

Определив ожидаемое значение каждой альтернативы и расположив результаты в виде матрицы, руководитель без труда может установить, какой выбор наиболее привлекателен при заданных критериях. Он будет, конечно, соответствовать наивысшему ожидаемому значению. Исследования показывают когда установлены точные значения вероятности, методы дерева решений и платежной матрицы обеспечивают принятие более качественных решений, чем традиционные подходы25.   седловую точку ot = max minay = max (22,21,20) = 22 - нижняя цена  

Суждения о предпочтительности альтернатив выносится по результатам их сравнения или оценки. Г позитивные и негативные стороны каждой из альтернатив и устанавливается некий компромисс, поз] сопоставление альтернативы с ранее принятым стандартом, критерием. Для этого используют критериальное сравнение Кепнера -Трегое, платежная матрица, дерево целей или решений, а также i теориях вероятности , предпочтений, полезности и др. Наиболее распространенным методом сравне) является метод дерева решений , особенно в ситуациях неопределенных , при наличии неуправляемы  

ИГРА С "ПРИРОДОЙ" - игра, в которой имеется только один игрок, причем исход ее зависит не только от его решений, но и от состояния "природы", т.е. не от сознательно противодействующего противника, но от объективной, невраждебной действительности. Платежная матрица в этом случае похожа на показанную в ст. "Матрица игры ", но здесь игрок X - это лицо, принимающее одно из т различных возможных решений, а игрок Y- "природа", принимающая и возможных состояний. При выборе решения игроком X могут использоваться различные критерии, напр.