Получение кислорода — Гипермаркет знаний. Кислород – характеристика элемента, распространённость в природе, физические и химические свойства, получение

Cтраница 1


Промышленное получение кислорода в настоящее время осуществляется по трем схемам: высокого давления, двух давлений и одного низкого давления. В установках малой производительности (до 300 м3 / ч технического кислорода) обычно используется холодильный цикл высокого или среднего давления. В этих установках воздух компримируется поршневыми компрессорами. Очистка воздуха от углекислоты производится в декарбонизаторах или скрубберах. Для получения холода в этих установках используется дросселирование или расширение воздуха в поршневом детандере.  

При промышленном получении кислорода способом разделения воздуха методом глубокого охлаждения и ректификации теоретически необходимо израсходовать 0 056 кет ч / м3 кислорода.  

Основным источником промышленного получения кислорода является жидкий воздух. Выделяемый из него кислород содержит обычно лишь незначительные примеси азота и тяжелых инертных газов. Для получения особо чистого кислорода пользуются иногда разложением воды электрическим током.  

Основным источником промышленного получения кислорода является воздух, который сжижают и затем фракционируют.  

Основным источником промышленного получения кислорода является жидкий воздух. Для получения особо чистого кислорода пользуются иногда разложением воды электрическим током.  


Основным источником промышленного получения кислорода является жидкий воздух. Выделяемый из него кислород содержит обычно лишь незначительные примеси азота и тяжелых инертных газов. Для получения особенного чистого кислорода пользуются иногда разложением воды электрическим током.  

На чем основано промышленное получение кислорода и азота из воздуха.  


На этом и основано промышленное получение кислорода и азота из воздуха.  

Однако оба этих метода непригодны для промышленного получения кислорода, потому что они неэкономичны.  

Атмосферный воздух является неисчерпаемым источником сырья для промышленного получения кислорода, азота и редких (инертных) газов методом глубокого охлаждения. Кроме кислорода и азота, воздух содержит в небольших количествах следующие газы: аргон, неон, гелий, криптон, ксенон и различные примеси.  

Присутствие ацетилена в жидком кислороде в количестве, превышающем допустимые пределы, может служить причиной возникновения взрывов в аппаратах для разделения воздуха при промышленном получении кислорода. Поэтому контроль содержания ацетилена в жидком кислороде имеет очень большое значение. Ниже приводим методы определения ацетилена в жидком кислороде.  

Мы уже указывали, что получение кислорода сжижением воздуха и последующим отделением азота неприменимо в лабораторных условиях, потому что для этого требуется сложная и громоздкая установка, подходящая только для промышленного получения кислорода.  

В нашей стране ежегодно вводятся в эксплуатацию новые и расширяются действующие станции и цехи для получения кислорода. Промышленное получение кислорода в настоящее время осуществляется методом низкотемпературной ректификации сжиженного воздуха. Воз-духоразделительные (кислородные) установки представляют собой комплекс машин и аппаратов, связанных определенной технологической схемой. Эксплуатация воздухораспределительных установок отличается тем, что в установках иногда происходят взрывы, приводящие к их разрушению или, в лучшем случае, к снижению качества продуктов производства.  

Кислород - это газ без вкуса, запаха и цвета. По содержанию в атмосфере занимает второе место после азота. Кислород является сильным окислителем и химически активным неметаллом. Этот газ был открыт одновременно несколькими учеными в XVI­II столетии. Первым добыть кислород удалось шведскому химику Шееле в 1772 году. Исследованием кислорода занимался французский химик Лавуазье, давший ему название «oxygène». Выявить кислород помогает тлеющая лучина: при контакте с газом она ярко вспыхивает.

Значение кислорода

Этот газ участвует в процессах горения. Кислород вырабатывают зеленые растения, в листьях которых осуществляется процесс фотосинтеза, который обогащает атмосферу этим жизненно важным газом.

Как получить кислород? Из воздуха газ добывают промышленным способом, воздух при этом очищают и сжижают. Наша планета имеет огромные запасы воды, составляющей которой является кислород. Это означает, что получать газ можно путем разложения воды. Сделать это можно в домашних условиях.

Как добыть кислород из воды

Для проведения эксперимента понадобятся такие инструменты и материалы:

Источник питания;

Пластмассовые стаканы (2 штуки);

Электроды (2 штуки);

Гальваническая ванна.

Рассмотрим сам процесс. В гальваническую ванну больше чем на половину объема наливаем воду, затем добавляем 2 мл едкого натра или разбавленной серной кислоты - это усилит электропроводность воды.

Делаем отверстия в дне пластмассовых стаканов, протягиваем через них электроды - угольные пластины. Необходимо заизолировать воздушную прослойку между стаканом и пластиной. Помещаем стаканы в ванну таким образом, чтобы электроды были в воде, а стаканы располагались вверх дном. Между поверхностью воды и дном стакана должно быть предельно мало воздуха.

Припаиваем металлический провод к каждому электроду, подключаем к источнику питания. Подключенный к отрицательному полюсу электрод называется катодом, подключенный к положительному полюсу - анодом.

Через воду проходит электрический ток - осуществляется электролиз воды.


Электролиз воды

Происходит химическая реакция, в ходе которой образуется два газа. Внутри стакана с катодом собирается водород, в стакане с анодом собирается кислород. Образование газов в стаканах с электродами определяем по пузырькам воздуха, поднимающимся из воды. Через трубку выводим кислород из стакана в другую емкость.

Правила безопасности

Проведение химического опыта по получению из воды кислорода возможно только при соблюдении правил техники безопасности. Газы, полученные в процессе электролиза воды, нельзя смешивать. Полученный водород взрывоопасен, поэтому он не не должен соприкасаться с воздухом. О том, какие опыты с газами безопасно проводить дома, можно узнать .

Как добыть кислород лабораторным способом

Способ первый : насыпаем перманганат калия в пробирку, ставим пробирку на огонь. Марганцовка нагревается, выделяется кислород. Улавливаем газ пневматической ванной. Итог: из 10 г перманганата калия выделяется 1 л кислорода.


Пневматическая ванна Стивена Хейлза

Способ второй : в пробирку насыпаем 5 г селитры, закрываем пробирку огнеупорной пробкой со стеклянной трубкой. Закрепляем пробирку на столе с помощью штатива, ставим под ней ванночку с песком, чтобы избежать чрезмерного нагревания. Включаем газовую горелку и направляем огонь на пробирку с селитрой. Вещество расплавляется, происходит выделение кислорода. Собираем газ через стеклянную трубку в надетый на ее воздушный шарик.

Способ третий : в пробирку насыпаем хлорат калия и ставим пробирку на огонь газовой горелки, предварительно закрыв ее огнеупорной пробкой со стеклянной трубкой. Бертолетова соль в процессе нагревания выделяет кислород. Собираем газ через трубку, надев на нее воздушный шарик.

Способ четвертый : стеклянную пробирку закрепляем на столе с помощью штатива, наливаем в пробирку пероксид водорода. При контакте с воздухом неустойчивое соединение разлагается на кислород и воду. Чтобы ускорить реакцию выделения кислорода, добавляем в пробирку активированный уголь. Пробирку закрываем огнеупорной пробкой со стеклянной трубкой, надеваем на трубку воздушный шарик и собираем кислород.

Кислород появился в земной атмосфере с возникновением зелёных растений и фотосинтезирующих бактерий. Благодаря кислороду аэробными организмами осуществляется дыхание или окисление. Важно получение кислорода в промышленности – он используется в металлургии, медицине, авиации, народном хозяйстве и других отраслях.

Свойства

Кислород - восьмой элемент периодической таблицы Менделеева. Это газ, поддерживающий горение и осуществляющий окисление веществ.

Рис. 1. Кислород в таблице Менделеева.

Официально кислород был открыт в 1774 году. Английский химик Джозеф Пристли выделил элемент из оксида ртути:

2HgO → 2Hg + O 2 .

Однако Пристли не знал, что кислород является частью воздуха. Свойства и нахождение в атмосфере кислорода позже уставил коллега Пристли - французский химик Антуан Лавуазье.

Общая характеристика кислорода:

  • бесцветный газ;
  • не имеет запаха и вкуса;
  • тяжелее воздуха;
  • молекула состоит из двух атомов кислорода (О 2);
  • в жидком состоянии имеет бледно-голубой цвет;
  • плохо растворим в воде;
  • является сильным окислителем.

Рис. 2. Жидкий кислород.

Присутствие кислорода легко проверить, опустив в сосуд с газом тлеющую лучину. При наличии кислорода лучина вспыхивает.

Как получают

Известно несколько способов получения кислорода из различных соединений в промышленных и лабораторных условиях. В промышленности кислород получают из воздуха путём его сжижения под давлением и при температуре в -183°С. Жидкий воздух подвергают испарению, т.е. постепенно нагревают. При -196°C азот начинает улетучиваться, а кислород сохраняет жидкое состояние.

В лаборатории кислород образуется из солей, пероксида водорода и в результате электролиза. Разложение солей происходит при нагревании. Например, хлорат калия или бертолетову соль нагревают до 500°С, а перманганат калия или марганцовку - до 240°С:

  • 2KClO 3 → 2KCl + 3O 2 ;
  • 2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2 .

Рис. 3. Нагревание бертолетовой соли.

Также можно получить кислород путём нагревания селитры или нитрата калия:

2KNO 3 → 2KNO 2 + O 2 .

При разложении пероксида водорода используется оксид марганца (IV) - MnO 2 , углерод или порошок железа в качестве катализатора. Общее уравнение выглядит следующим образом:

2Н 2 О 2 → 2Н 2 О + О 2 .

Электролизу подвергается раствор гидроксида натрия. В результате образуется вода и кислород:

4NaOH → (электролиз) 4Na + 2H 2 O + O 2 .

Также кислород с помощью электролиза выделяют из воды, разложив её на водород и кислород:

2H 2 O → 2H 2 + O 2 .

На атомных подводных лодках кислород получали из пироксида натрия - 2Na 2 O 2 + 2CO 2 → 2Na 2 CO 3 + O 2 . Способ интересен тем, что вместе с выделением кислорода поглощается углекислый газ.

Как применяют

Собирание и распознавание необходимо для выделения чистого кислорода, использующегося в промышленности для окисления веществ, а также для поддержания дыхания в космосе, под водой, в задымлённых помещениях (кислород необходим пожарным). В медицине баллоны кислорода помогают дышать пациентам с затруднённым дыханием. Также кислород используется для лечения респираторных заболеваний.

Кислород применяют для сжигания топлива - угля, нефти, природного газа. Кислород широко применяется в металлургии и машиностроении, например, для плавки, резки и сварки металла.

Средняя оценка: 4.9 . Всего получено оценок: 177.

Здравствуйте. Вы уже читали мои статьи в блоге Tutoronline.ru. Сегодня я расскажу Вам о кислороде и о способах его получения. Напоминаю, если у Вас будут ко мне вопросы, Вы можете писать их в комментариях к статье. Если же Вам понадобиться любая помощь по химии, записывайтесь на мои занятия в расписании . Буду рад Вам помочь.

Кислород распространён в природе в виде изотопов 16 О, 17 О, 18 О, которые имеют следующее процентное содержание на Земле – 99,76%, 0,048%, 0,192% соответственно.

В свободном состоянии кислород находится в виде трёх алло-тропных модификаций : атомарного кислорода - О о, дикислорода – О 2 и озона – О 3 . Причём, атомарный кислород может быть получен следующим образом:

КClO 3 = KCl + 3O 0

KNO 3 = KNO 2 + O 0

Кислород входит в состав более 1400 различных минералов и органических веществ, в атмосфере его содержание составляет 21% по объёму. А в человеческом теле содержится до 65% кислорода. Кислород газ без цвета и запаха, мало растворим в воде (в 100 объёмах воды при 20 о С растворяется 3 объёма кислорода).

В лаборатории кислород получают умеренным нагреванием некоторых веществ:

1) При разложении соединений марганца (+7) и (+4):

2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2
перманганат манганат
калия калия

2MnO 2 → 2MnO + O 2

2) При разложении перхлоратов:

2KClO 4 → KClO 2 + KCl + 3O 2
перхлорат
калия

3) При разложении бертолетовой соли (хлората калия) .
При этом образуется атомарный кислород:

2KClO 3 → 2 KCl + 6O 0
хлорат
калия

4) При разложении на свету солей хлорноватистой кислоты - гипохлоритов:

2NaClO → 2NaCl + O 2

Ca(ClO) 2 → CaCl 2 + O 2

5) При нагревании нитратов.
При этом образуется атомарный кислород. В зависимости от того, какое положение в ряду активности занимает металл нитрата, образуются различные продукты реакции:

2NaNO 3 → 2NaNO 2 + O 2

Ca(NO 3) 2 → CaO + 2NO 2 + O 2

2AgNO 3 → 2 Ag + 2NO 2 + O 2

6) При разложении пероксидов:

2H 2 O 2 ↔ 2H 2 O + O 2

7) При нагревании оксидов неактивных металлов:

2Аg 2 O ↔ 4Аg + O 2

Данный процесс имеет актуальное значение в быту. Дело в том, что посуда, изготовленная из меди или серебра, имея естественный слой оксидной плёнки, при нагревании образует активный кислород, что является антибактериальным эффектом. Растворение солей неактивных металлов, особенно нитратов, также приводит к образованию кислорода. Например, суммарный процесс растворения нитрата серебра можно представить по этапам:

AgNO 3 + H 2 O → AgOH + HNO 3

2AgOH → Ag 2 O + O 2

2Ag 2 O → 4Ag + O 2

или в суммарном виде:

4AgNO 3 + 2H 2 O → 4Ag + 4HNO 3 + 7O 2

8) При нагревании солей хрома высшей степени окисления:

4K 2 Cr 2 O 7 → 4K 2 CrO 4 + 2Cr 2 O 3 + 3 O 2
бихромат хромат
калия калия

В промышленности кислород получают:

1) Электролитическим разложением воды:

2Н 2 О → 2Н 2 + О 2

2) Взаимодействием углекислого газа с пероксидами:

СО 2 + К 2 О 2 →К 2 СО 3 + О 2

Данный способ представляет собой незаменимое техническое решение проблемы дыхания в изолированных системах: подводных лодках, шахтах, космических аппаратах.

3) При взаимодействии озона с восстановителями:

О 3 + 2КJ + H 2 O → J 2 + 2KOH + O 2


Особое значение получение кислорода имеет место в процессе фотосинтеза
, происходящего в растениях. Кардинальным образом от этого процесса зависит вся жизнь на Земле. Фотосинтез – сложный многоступенчатый процесс. Начало ему даёт свет. Сам фотосинтез состоит из двух фаз: световой и темновой. В световую фазу пигмент хлорофилл, содержащийся в листьях растений, образует так называемый «светопоглощающий» комплекс», который отнимает электроны у воды, и тем самым расщепляет её на ионы водорода и кислород:

2Н 2 О = 4е + 4Н + О 2

Накопившиеся протоны способствуют синтезу АТФ:

АДФ + Ф = АТФ

В темновую фазу происходит преобразование углекислого газа и воды в глюкозу. И побочно выделяется кислород:

6СО 2 + 6Н 2 О = С 6 Н 12 О 6 + О 2

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Для получения кислорода , потребуются вещества, которые им богаты. Это пероксиды, селитры, хлораты. Мы будем использовать те, что можно достать без особого труда.

Для получения кислорода в домашних условиях есть несколько способов, разберём их по-порядку.

Самый простой и доступный способ получения кислорода – использовать марганцовку (или более правильное название – перманганат калия). Всем известно, что марганцовка – прекрасный антисептик, используется в качестве обеззараживающего вещества. Если её нет, то можно приобрести в аптеке.

Поступим так. В пробирку насыпаем немного марганцовки, закроем пробиркой с отверстием, в отверстие установим газоотводную трубку (по ней будет идти кислород). Другой конец трубки поместим в другую пробирку (она должна располагаться вверх дном, так как выделяющийся кислород легче воздуха и будет подниматься вверх. Такой же пробкой закром вторую пробирку.
В итоге у нас должно получиться две пробирки, соединённые между собой газоотводной трубкой через пробки. В одной (неперевёрнутой) пробирке - марганцовка. Будем нагревать пробирку с марганцовкой. Тёмно-фиолетово-вишнёвый цвет кристалликов марганцовки исчезнет и превратится в тёмно-зелёные кристаллы манганата калия.

Реакция протекает так:

2KMnO 4 → MnO 2 + K 2 MnO 4 +O 2

Так из 10 грамм марганцовки можно получить почти 1 литр кислорода. Через пару минут можно извлечь колбу с марганцовкой из пламени. Мы получили кислород в перевёрнутой пробирке. Можем его проверить. Для этого аккуратно отсоединим вторую трубку (с кислородом) от газоотводной трубки, прикрыв отверстие пальцем. Теперь, если внести слабо горящую спичку в колбу с кислородом, то она ярко вспыхнет!

Получение кислорода возможно также с помощью натриевой или калиевой селитры (соответствующие соли натрия и калия азотной кислоты).
(Нитраты калия и натрия – они же – селитры, продаются на магазинах для удобрений).

Итак, для получения кислорода из селитры возьмём пробирку из тугоплавкого стекла на штативе, поместим туда селитровый порошок (5 грамм будет достаточно).Потребуется под пробирку поставить керамическую чашечку с песком, та как стекло может расплавиться от температуры и потечь. Следовательно, горелку надо будет держать немного сбоку, а пробирку с селитрой – под наклоном.

При сильном нагреве селитры она начинает плавиться, при этом выделяется кислород. Реакция проходит так:

2KNO 3 → 2KNO 2 +O 2

Образующееся вещество – нитрит калия (или натрия, смотря, какая селитра использована) – соль азотистой кислоты.

Ещё один способ получения кислорода – использовать перекись водорода. Пероксид, гидроперит – всё одно и то же вещество. Перекись водорода продаётся в таблетках и в виде растворов (3%, 5%, 10%), которое можно приобрести в аптеке.

В отличии от предыдущих веществ, селитр или марганцовки, перекись водорода – неустойчивое вещество. Уже при наличии света она начинает распадаться на кислород и воду. Поэтому в аптеках перекись продаётся в пузырьках из тёмного стекла.

Кроме того, быстрому разложению перекиси водорода на воду и кислород способствуют катализаторы, например, оксид марганца, активированный уголь, стальной порошок (мелкая стружка) и даже слюна. Поэтому, перекись водорода нагревать не нужно, достаточно катализатора!