Резерфорд открывает атомное ядро. Эрнест резерфорд - биография, информация, личная жизнь

Первая страница статьи Э. Резерфорда в журнале Philosophical Magazine, 6, 21 (1911), в которой впервые водится понятие «атомное ядро».

Открытое 100 лет назад Э.Резерфордом атомное ядро является связанной системой взаимодействующих протонов и нейтронов. Каждое атомное ядро по-своему уникально. Для описания атомных ядер разработаны различные модели, описывающие отдельные специфические особенности атомных ядер. Изучение свойств атомных ядер открыло новый мир - субатомный квантовый мир, привело к установлению новых законов сохранения и симметрии. Полученные в ядерной физике знания широко используются в естествознании от изучения живых систем до астрофизики.

1. 1911 г. Резерфорд открывает атомное ядро.

В июньском 1911 г. номере журнала «Philosophical Magazine» была опубликована работа Э. Резерфорда «Рассеяние α- и β-частиц веществом и строение атома», в которой впервые было введено понятие «атомное ядро» .
Э.Резерфорд проанализировал результаты работы Г. Гейгера и Э.Марсдена по рассеянию α-частиц на тонкой золотой фольге, в которой совершенно неожиданно было обнаружено, что небольшое число α-частиц отклоняется на угол больше 90°. Этот результат противоречил господствовавшей в то время модели атома Дж. Дж. Томсона, согласно которой атом состоял из отрицательно заряженных электронов и равного количества положительного электричества равномерно распределенного внутри сферы радиуса R ≈ 10 - 8 см. Для объяснения результатов, полученных Гейгером и Марсденом, Резерфорд разработал модель рассеяния точечного электрического заряда другим точечным зарядом на основе закона Кулона и законов движения Ньютона и получил зависимость вероятности рассеяния α-частиц на угол θ от энергии E налетающей α-частицы

Измеренное Гейгером и Марсденом угловое распределение α-частиц можно было объяснить только в том случае, если предположить, что атом имеет центральный заряд, распределенный в области размером <10 -12 см. Результирующий заряд ядра приблизительно равен Ae/2, где A - вес атома в атомных единицах массы, e - фундаментальная единица заряда. Точность определения величины заряда ядра золота составила ≈ 20%. Так возникла планетарная модель атома, согласно которой атом состоит из массивного положительно заряженного атомного ядра и вращающихся вокруг него электронов. Так как в целом атом электрически нейтрален - положительный заряд ядра компенсировался отрицательным зарядом электронов. Число электронов в атоме определялось величиной заряда ядра Z.

В 1910 г. к Резерфорду в лабораторию приехал работать молодой ученый по имени Марсден. Он попросил Резерфорда дать ему какую-нибудь очень простую задачу. Резерфорд поручил ему считать α-частицы, проходящие через материю, и найти их рассеяние. При этом Резерфорд заметил, что по его мнению Марсден ничего заметного не обнаружит. Свои соображения Резерфорд основывал на принятой в то время модели атома Томсона. В соответствии с этой моделью атом представлялся сферой размером 10 -8 см с равнораспределенным положительным зарядом, в которую были вкраплены электроны. Гармонические колебания последних определяли спектры лучеиспускания. Легко показать, что α-частицы должны были легко проходить через такую сферу, и особенного рассеяния их нельзя было ожидать. Всю энергию на пути своего пробега α-частицы тратили на то, чтобы выбрасывать электроны, которые ионизировали окружающие атомы.
Марсден под руководством Гейгера стал делать свои наблюдения и скоро заметил, что большинство α-частиц проходит через материю, но все же существует заметное рассеяние, а некоторые частицы как бы отскакивают назад. Когда это узнал Резерфорд, он сказал:
Это невозможно. Это так же невозможно, как для пули невозможно отскочить от бумаги.
Эта фраза показывает, как конкретно и образно он видел явление.
Марсден и Гейгер опубликовали свою работу, а Резерфорд сразу решил, что существующее представление об атоме неправильно и его надо в корне пересмотреть.
Изучая закон распределения отразившихся α-частиц, Резерфорд постарался определить, какое распределение поля внутри атома необходимо, чтобы определить закон рассеивания, при котором α-частицы могут даже возвращаться обратно. Он пришел к выводу, что это возможно тогда, когда весь заряд сосредоточен не по всему объему атома, а в центре. Размер этого центра, названного им ядром, очень мал: 10
-12 —10 -13 см в диаметре. Но куда же тогда поместить электроны? Резерфорд решил, что отрицательно заряженные электроны надо распределить кругом — они могут удерживаться благодаря вращению, центробежная сила которого уравновешивает силу притяжения положительного заряда ядра. Следовательно, модель атома есть не что иное, как некая солнечная система, состоящая из ядра — солнца и электронов — планет. Так он создал свою модель атома.
Эта модель встретила полное недоумение, так как она противоречила некоторым тогдашним, казавшимся незыблемыми, основам физики .

П.Л. Капица. «Воспоминания о профессоре Э. Резерфорде»

1909-1911 г. Опыты Г. Гейгера и Э. Марсдена

Г. Гейгер и Э. Марсден увидели, что при прохождении через тонкую фольгу из золота большинство α-частиц, как и ожидалось, пролетает без отклонения, но неожиданно было обнаружено, что часть α-частиц отклоняется на очень большие углы. Некоторые α-частицы рассеивались даже в обратном направлении. Расчеты напряженности электрического поля атомов в моделях Томсона и Резерфорда показывают существенное различие этих моделей. Напряжённость поля положительного заряда распределенного по поверхности атома в случае модели Томсона ~10 13 В/м. В модели Резерфорда положительный заряд, находящийся в центре атома в области R < 10 -12 см создаёт напряженности поля на 8 порядков больше. Только такое сильное электрического поле массивного заряженного тела может отклонить α-частицы на большие углы, в то время как в слабом электрическом поле модели Томсона это было невозможно.

Э. Резерфорд, 1911 г. «Хорошо известно, что α- и β-частицы при столкновении с атомами вещества испытывают отклонение от прямолинейного пути. Это рассеяние гораздо более заметно у β-частиц нежели у α-частиц, т.к. они обладают значительно меньшими импульсами и энергиями. Поэтому нет сомнения в том, что столь быстро движущиеся частицы проникают сквозь атомы, встречающиеся на их пути, и что наблюдаемые отклонения обусловлены сильным электрическим полем, действующим внутри атомной системы. Обычно предполагалось, что рассеяние пучка α- или β-лучей при прохождении через тонкую пластинку вещества есть результат многочисленных малых рассеяний при прохождении атомов вещества. Однако наблюдения проведенные Гейгером и Марсденом показали, что некоторое количество α-частиц при однократном столкновении испытывают отклонение на угол больше 90°. Простой расчет показывает, что в атоме должно существовать сильное электрическое поле, чтобы при однократном столкновении создавалось столь большое отклонение».

1911 г. Э. Резерфорд. Атомное ядро

α + 197 Au → α + 197 Au


Эрнест Резерфорд
(1891-1937)

Исходя из планетарной модели атома, Резерфорд вывел формулу описывающую рассеяние α-частиц на тонкой фольге из золота, согласующуюся с результатами Гейгера и Марсдена. Резерфорд предполагал, что α-частицы и атомные ядра с которыми они взаимодействуют можно рассматривать как точечные массы и заряды и что между положительно заряженными ядрами и α-частицами действуют только электростатические силы отталкивания и что ядро настолько тяжелое по сравнению с α-частицей, что оно не смещается в процессе взаимодействия. Электроны вращаются вокруг атомного ядра на характерных атомных масштабах ~10-8 см и из-за малой массы не влияют на рассеяние α-частиц.

Вначале Резерфорд получил зависимость угла рассеяния θ α-частицы с энергией E от величины прицельного параметра b столкновения с точечным массивным ядром. b − прицельный параметр − минимальное расстояние на которое α-частица подошла бы к ядру, если бы между ними не действовали силы отталкивания, θ − угол рассеяния α-частицы, Z 1 e − электрический заряд α-частицы, Z 2 e − электрический заряд ядра.
Затем Резерфорд рассчитал, какая доля пучка α-частиц с энергией E рассеивается на угол θ в зависимости от заряда ядра Z 2 e и заряда α-частицы Z 1 e. Так исходя из классических законов Ньютона и Кулона была получена знаменитая формула рассеяния Резерфорда. Основным при получении формулы было предположение, что в атоме находится массивный положительно заряженный центр, размеры которого R < 10 -12 см.

Э. Резерфорд, 1911 г.: «Наиболее простым является предположение, что атом имеет центральный заряд, распределенный по очень малому объему, и что большие однократные отклонения обусловлены центральным зарядом в целом, а не его составными частями. В то же время экспериментальные данные недостаточно точны, чтобы можно было отрицать возможности существования небольшой части положительного заряда в виде спутников, находящихся на некотором расстоянии от центра … Следует отметить, что найденное приближенное значение центрального заряда атома золота (100e) примерно совпадает с тем значением, который имел бы атом золота, состоящий из 49 атомов гелия, несущих каждый заряд 2e. Быть может, это лишь совпадение, но оно весьма заманчиво с точки зрения испускания радиоактивным веществом атомов гелия, несущих две единицы заряда».


Дж. Дж. Томсон и Э. Резерфорд

Э. Резерфорд, 1921 г.: «Представление о нуклеарном строении атома первоначально возникло из попыток объяснить рассеяние α-частиц на большие углы при прохождении через тонкие слои материи. Так как α частицы обладают большою массою и большою скоростью, то эти значительные отклонения были в высшей степени замечательны; они указывали на существование весьма интенсивных электрически! или магнитных полей внутри атомов. Чтобы объяснить эти результаты, необходимо было предположить, что атом состоит из заряженного массивного ядра, весьма малых размеров по сравнению с обычно принятой величиной диаметра атома. Это положительно заряженное ядро содержит большую часть массы атома и окружено на некотором расстоянии известным образом распределенными отрицательными электронами; число которых равняется общему положительному заряду ядра. При таких условиях вблизи ядра должно существовать весьма интенсивное электрическое поле и α-частицы, при встрече с отдельным атомом проходя вблизи от ядра, отклоняются на значительные углы. Допуская, что электрические силы изменяются обратно пропорционально квадрату расстояния в области, прилегающей к ядру, автор получил соотношение, связывающее число α-частиц, рассеянных на некоторый угол с зарядом ядра и энергией α-частицы.
Вопрос о том, является ли атомное число элемента действительной мерой его нуклеарного заряда, настолько важен, что для разрешения его должны быть применены все возможные методы. В настоящее время в кавендишевской лаборатории ведется несколько исследований с целью проверки точности этого соотношения. Два наиболее прямых метода основаны на изучения рассеяния быстрых α- и β-лучей. Первый метод применяется Chadwick"oм, пользующимся новыми приемами; последний - Crowthar"oм. Результаты, полученные до сих пор Chadwick"oм, вполне подтверждают тождество атомного числа с нуклеарным зарядом в пределах возможной точности эксперимента, которая у Chadwick"a составляет около 1%».

Несмотря на то, что комбинация двух протонов и двух нейтронов исключительно устойчивое образование, в настоящее время считается, что α-частицы не входит в состав ядра в качестве самостоятельного структурного образования. В случае α-радиоактивных элементов энергия связи α-частицы больше, чем энергия которую необходимо затратить на то, чтобы по отдельности удалить из ядра два протона и два нейтрона, поэтому α-частица может быть испущена из ядра, хотя она не присутствует в ядре как самостоятельное образование.
Предположение Резерфорда о том, что атомное ядро может состоять из какого-то количества атомов гелия или о положительно заряженных спутниках ядра, было вполне естественным объяснением открытой им α радиоактивности. Представления о том, что частицы могут рождаться в результате различных взаимодействий, в это время еще не существовало.
Открытие атомного ядра Э. Резерфордом в 1911 г. и последующее изучение ядерных явлений радикально изменило наше представление об окружающем мире. Обогатило науку новыми концепциями, явилось началом исследования субатомной структуры материи.

Итак, сегодня у нас суббота, 17 июня 2017 года и мы традиционно предлагаем вам ответы на викторину в формате «Вопрос - ответ». Вопросы нам встречаются как самые простые, так и достаточно сложные. Викторина очень интересная и достаточно популярная, мы же просто помогаем вам проверить свои знания и убедиться, что вы выбрали правильный вариант ответа, из четырех предложенных. И у нас очередной вопрос в викторине - Какое прозвище физик Эрнест Резерфорд получил благодаря тому что ученики издалека узнавали его по шагам и по голосу?

  • Динамит
  • Крокодил
  • Будильник

Правильный ответ С - Крокодил

В 1931 году Резерфорд выхлопотал 15 ООО фунтов стерлингов на постройку и оснащение оборудованием специального здания для лаборатории Капицы, торжественное открытие которой состоялось в феврале 1933 года. Входную дверь в лабораторию двухэтажного здания открыли «золотым» ключом в форме крокодила. На торцевой стене лабораторного корпуса было высечено изображение огромного крокодила. По заказу Капицы эту работу выполнил известный скульптор Эрик Гилл.

Почему крокодил? Оказывается, крокодил - это кличка Резерфорда, данная ему Капицей. Об этом знали все сотрудники лаборатории, знал и сам Резерфорд. Об ее происхождении Капица говорил: «Это животное никогда не поворачивает назад и потому может символизировать резерфордовскую проницательность и его стремление к продвижению вперед».

Резерфорд Эрнест (1871-1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы.

Родился 30 августа 1871 г. в городе Спринг – Броув (Новая Зеландия) в семье шотландских эмигрантов. Отец работал механиком и фермером-льноводом, мать - учительницей. Эрнест был четвёртым из 12 детей Резерфордов и самым талантливым.

Уже при окончании начальной школы, как первый ученик, он получил премию в 50 фунтов стерлингов для продолжения образования. Благодаря этому Резерфорд поступил в колледж в Нельсоне (Новая Зеландия). После окончания колледжа юноша сдал экзамены в Кентерберийский университет и здесь серьёзно занялся физикой и химией.

Он участвовал в создании научного студенческого общества и сделал в 1891 г. доклад на тему «Эволюция элементов», где впервые прозвучала идея о том, что атомы - сложные системы, построенные из одних и тех же составных частей.

В период, когда в физике господствовала идея Дж. Дальтона о неделимости атома, эта мысль показалась абсурдной, и молодому учёному даже пришлось извиняться перед коллегами за «явную чепуху».

Правда, через 12 лет Резерфорд доказал свою правоту. После окончания университета Эрнест стал учителем средней школы, но это занятие было ему явно не по душе. К счастью, Резерфорду - лучшему выпускнику года - присудили стипендию, и он отправился в Кембридж - научный центр Англии - для продолжения занятий.

В Кавендишской лаборатории Резерфорд создал передатчик для радиосвязи в радиусе 3 км, но отдал приоритет на его изобретение итальянскому инженеру Г. Маркони, а сам приступил к изучению ионизации газов и воздуха. Учёный заметил, что урановое излучение имеет две составляющие - альфа- и бета-лучи. Это было открытием.

В Монреале при изучении активности тория Резерфорд открыл новый газ - радон. В 1902 г. в работе «Причина и природа радиоактивности» учёный впервые высказал мысль о том, что причиной радиоактивности является самопроизвольный переход одних элементов в другие. Он установил, что альфа-частицы заряжены положительно, их масса больше массы атома водорода, а заряд приблизительно равен заряду двух электронов, и это напоминает атомы гелия.

В 1903 г. Резерфорд стал членом Лондонского королевского общества, а с 1925 по 1930 г. занимал пост его президента.

В 1904 г. вышел фундаментальный труд учёного «Радиоактивные вещества и их излучения», который стал энциклопедией для физиков-ядерщиков. В 1908 г. Резерфорд стал нобелевским лауреатом за исследования радиоактивных элементов. Руководитель физической лаборатории в Манчестерском университете, Резерфорд создал школу физиков-ядерщиков, своих учеников.

Вместе с ними он занимался исследованием атома ив 1911 г. окончательно пришёл к планетарной модели атома, о чём написал в статье, вышедшей в майском номере «Философского журнала». Модель приняли не сразу, она утвердилась только после её доработки учениками Резерфорда, в частности Н. Бором.

Умер учёный 19 октября 1937 г. в Кембридже. Как и многие великие люди Англии, Эрнест Резерфорд покоится в соборе Святого Павла, в «Уголке науки», рядом с Ньютоном, Фарадеем, Дарённом, Гершелем.

РЕЗЕРФОРД ЭРНЕСТ

(1871 г. – 1937 г.)


Гениальный английский физик и химик Эрнест Резерфорд родился 30 августа 1871 года в Спринг-Гроув, неподалеку от города Нельсон в Новой Зеландии. Он был четвертым ребенком в многодетной семье Джеймса и Марты Резерфорд (урожденной Томпсон).

Отец Эрнеста работал колесным мастером, инженером, строителем, мельником. В 1843 году в поисках лучшей жизни он переселился в Новую Зеландию из Шотландии. Мать Эрнеста, Марта Томпсон, была школьной учительницей и переехала в тринадцатилетнем возрасте в Нельсон из Англии.

В детстве Резерфорд вел жизнь, типичную для сельского мальчишки, помогал доить коров, собирать дрова. По субботам вместе с другими детьми будущий ученый мастерил рогатки и плавал наперегонки. Поскольку отец часто менял работу, семье приходилось все время переезжать.

В возрасте 10 лет Эрнест пошел в местную школу Фоксхилла, где прочитал первую научную книгу. В этом году он провел свой первый опыт по измерению скорости звука, приведенный в учебнике.

В 1887 году Эрнест поступил в Нельсон-колледж и вскоре стал одним из лучших учеников. Особенно молодого Резерфорда интересовала математика. Много свободного времени Эрнест уделял игре в регби, но это не помешало ему получить одну из десяти школьных стипендий, дающую возможность поступить в Кентерберийский колледж в Крайчестере (филиал Новозеландского университета), одном из крупнейших городов Новой Зеландии.

В 1892 году Эрнесту Резерфорду была присуждена степень бакалавра гуманитарных наук. Любимыми предметами будущего ученого в колледже были физика и химия. Он лучше всех сдал экзамены по этим предметам и стал бакалавром естественных наук.

В своей магистерской работе Эрнест исследовал высокочастотные радиоволны, открытые около десяти лет назад. Для изучения этого явления Резерфорд сконструировал беспроволочный радиоприемник, с помощью которого получал сигналы с расстояния более полумили.

К двадцати трем годам Эрнест Резерфорд имел уже три научные степени. В то время наиболее одаренным молодым заморским подданным Британии раз в два года предоставляли специальную стипендию имени Всемирной выставки 1851 года, которая давала возможность совершенствоваться в науках в Англии. В 1895 году среди претендентов на получение одной стипендии было две кандидатуры – химика МакЛорена и физика Резерфорда.

Стипендию присудили МакЛорену, но семейные обстоятельства не позволили ему поехать в Англию. Судьба оказалась благосклонна к Резерфорду, и осенью 1895 года он по приглашению Дж. Дж. Томсона переехал в Англию, в Кавендишскую лабораторию Кембриджского университета. В Кембридже Резерфорд стал первым докторантом директора лаборатории Джозефа Джона Томсона.

К тому времени Томсон был всемирно известным ученым, членом Лондонского королевского общества. Работа Резерфорда по исследованию радиоволн произвела впечатление на знаменитого физика, и он предложил молодому ученому совместно изучать процессы ионизации газов под действием рентгеновских лучей, открытых годом ранее Вильгельмом Рентгеном.

В 1896 году ученые опубликовали совместную работу «О прохождении электричества через газы, подвергнутые действию лучей Рентгена». В следующем году Резерфорд издал свою работу «Магнитный детектор электрических волн и некоторые его применения». В этом же году он написал статью «Об электризации газов, подверженных действию рентгеновских лучей, и о поглощении рентгеновского излучения газами и парами».

Работая в Кавендишской лаборатории, Резерфорд внимательно следил за открытиями других физиков и химиков. После того как в Парижской академии наук Пьер Кюри и Мария Склодовская-Кюри представили результаты своих исследований, доказавших, что кроме урана существуют и другие радиоактивные элементы, молодой ученый начал самостоятельные работы в этой области. Он провел первые исследования лучей Беккереля и обнаружил неоднородность излучения, испускаемого ураном.

Опираясь на свои собственные результаты, Эрнест Резерфорд и Дж. Дж. Томсон предположили, что под действием рентгеновских лучей разрушаются атомы газа и появляются отрицательно и положительно заряженные частицы. Эти частицы ученые назвали ионами. Совместные труды ученых привели также к открытию электрона – атомной частицы, несущей отрицательный электрический заряд.

В декабре 1897 года Резерфорду продлили стипендию имени Всемирной выставки, и он начал серьезно заниматься исследованием атомной структуры. Однако когда в апреле 1898 года освободилось место профессора Мак-Гиллского университета в Монреале и молодому ученому предложили эту должность, он дал согласие. Осенью 1898 года Резерфорд начал преподавать в Мак-Гиллском университете.

В Канаде тогда еще двадцатисемилетний профессор совершил множество гениальных открытий. В 1899 году он обнаружил, что радиоактивный торий испускает газообразный радиоактивный продукт. Это явление ученый назвал «эманацией» (испусканием). В результате последующих исследований было установлено, что два других радиоактивных элемента – радий и актиний – тоже производят эманацию.

Ученый показал, что существуют, по крайней мере, два вида излучения. Первое из них, которое легко поглощалось, он назвал альфа-излучением, а второе, обладающее большей проникающей способностью, – бета-излучением.

Проанализировав результаты исследований, Резерфорд сделал вывод, что все известные науке радиоактивные элементы испускают альфа– и бета-лучи. Поскольку через определенный период времени радиоактивность элементов уменьшалась, ученый предположил, что все радиоактивные элементы принадлежат к одному семейству атомов. Таким образом, их можно классифицировать по периоду уменьшения их радиоактивности.

В 1902–1903 годах Резерфорд, совместно с Фредериком Содди, одним из основателей радиохимии, продолжил исследования в данной области. Ученые открыли общий закон радиоактивных превращений, выразили его в математической форме, ввели понятие «период полураспада», а также изложили основные положения созданной ими теории радиоактивности.

По Резерфорду и Содди, радиоактивность возникала в том случае, когда атом отторгал частицу самого себя. В результате потери атом одного химического элемента превращался в атом другого.

Открытия ученых вошли в перечень важнейших научных событий XX века. Все ранее существовавшие аксиомы о неделимости и неизменности атомов были разрушены. Ученые сформулировали законы превращений, из которых следовало, что превращения химических элементов при радиоактивных распадах не только происходят, но и замедлить или прекратить их не является возможным.

Исследуя радиоактивные превращения, Резерфорд и Содди подсчитали энергию альфа-частиц, испускаемых радием, и сделали вывод, что энергия радиоактивных превращений во много тысяч, а может, и миллионов раз превышает энергию любого молекулярного превращения. По мнению ученых, эту энергию необходимо было учитывать при любых явлениях космической физики, в частности, постоянство солнечной энергии они объясняли тем, что на Солнце происходят процессы субатомного превращения.

В 1903 году Резерфорд провел ряд экспериментов, доказывающих его теорию, а также показал, что альфа-частицы несут положительный заряд.

Работы Резерфорда принесли ему огромную известность. В 1903 году он был избран членом Лондонского королевского общества.

В 1904 году Резерфорд написал книгу «Радиоактивность», в которой представил и сформулировал результаты своих исследований. В следующем году он опубликовал свою вторую книгу «Радиоактивные превращения». Резерфорда стали приглашать на работу разные университеты и научно-исследовательские центры разных стран. В 1907 году он решил сменить место проживания и вернулся в Англию. 24 мая 1907 года Резерфорд приехал в Манчестер, где занял пост профессора физики в Манчестерском университете.

В Манчестере Резерфорд продолжил свои исследования. При помощи Гейгера он организовал при университете школу по изучению радиоактивности. В 1908 году Резерфорд помог Гансу Гейгеру создать счетчик альфа-частиц и в следующем году доказал, что альфа-частицы являются дважды ионизированными атомами гелия.

В 1908 году «за проведенные им исследования в области распада элементов в химии радиоактивных веществ» Резерфорду была присуждена Нобелевская премия по химии. В презентационной речи президент Шведской королевской академии наук К. Б. Хассельберг указал на огромное значение открытий ученого.

В своей нобелевской лекции «Химическая природа альфа-частиц в радиоактивных веществах», прочитанной 11 декабря 1908 года, Резерфорд предположил, что альфа-частицы идентичны по массе и составу и состоят из ядер атомов гелия. Из этого следует, что атомы радиоактивных элементов также частично состоят из атомов гелия.

После получения Нобелевской премии Резерфорд начал исследовать строение атома. Он обратился к методике, которую применял вместе с Дж. Дж. Томсоном в Кавендишской лаборатории, – к просвечиванию альфа-частицами. Ученый вместе с ассистентами Гансом Гейгером и Эрнстом Марсденом провел ряд опытов, в которых бомбардировал пластинку тонкой золотой фольги альфа-частицами, излучаемыми ураном. В то время физики считали, что расстояния между атомами в твердых телах примерно такие же, как и размеры атомов. Отсюда можно было сделать вывод, что альфа-частицы не смогут пролететь даже сквозь тонкую фольгу.

Уже первые опыты Резерфорда опровергли этот вывод – большая часть альфа-частиц пронизывала фольгу, почти не отклоняясь. Но примерно в одном из 8000 случаев они отклонялись от ожидаемого направления в даже большей степени, чем это допускалось теорией, словно сталкиваясь с какой-то преградой. Эта удивительная аномалия оказалась начальным пунктом в разработке ядерной модели атома.

После того как Дж. Дж. Томсон открыл, что электроны имеют отрицательный электрический заряд, он предложил модель атома в виде положительно заряженной капли радиусом в стомиллионную долю (10,8) сантиметра, внутри которой находятся крохотные отрицательно заряженные электроны. Положительные и отрицательные заряды равномерно распределялись в атоме и, следовательно, не могли в значительной мере изменять направление движения альфа-частиц.

Исходя из своих опытов, в 1911 году Резерфорд отказался от модели Томсона и предложил новую модель атома. Свои идеи он изложил в статье «Рассеяние альфа– и бета-излучений в веществе и структура атома» майского номера журнала «Philosophical Magazin» – вестника множества гениальных открытий.

По Резерфорду, в центре атома находится ядро, в котором сосредоточены положительно заряженные частицы и которое составляет всю массу атома. Отрицательно заряженные частицы (электроны) размещены на орбите ядра, на довольно большом расстоянии от него. Поскольку массы электронов значительно меньше масс альфа-частиц, последние почти не отклоняются, пронизывая электронные облака. И только в том случае, когда альфа-частица пролетает близко от положительно заряженного ядра, кулоновская сила отталкивания резко изменяет ее траекторию.

Модель Резерфорда, которая на сегодняшний день является общепринятой, напоминала крошечную модель Солнечной системы и получила название «планетарной модели атома».

После того как в 1913 году друг и сотрудник Резерфорда датский физик Нильс Бор внес в планетарную модель идею квантов, модель атома получила мировое признание. Бор предположил, что в атоме существуют орбиты, двигаясь по которым электрон получает ускорение, и указал правило для нахождения таких стационарных орбит. При переходе электрона с одной орбиты на другую в соответствии с законом сохранения энергии появляются кванты излучения.

Теория Нильса Бора устранила главный недостаток планетарной модели атома – электродинамическую неизбежность падения вращающегося электрона на ядро.

Во время Первой мировой войны английское правительство назначило Резерфорда членом гражданского комитета Управления изобретений и исследований Британского адмиралтейства. В его обязанности входило изобретение метода обнаружения подводных лодок противника с помощью акустики.

После войны Эрнест Резерфорд вернулся в манчестерскую лабораторию.

В 1919 году гениальный ученый осуществил первую искусственную ядерную реакцию. После бомбардирования атомов водорода, а затем и азота, альфа-частицами Резерфорд обнаружил, что при этом образуются атомы кислорода. В результате бомбардировки произошел распад устойчивого атома. Опираясь на исследования Резерфорда и используя результаты своих исследований, в 1934 году Фредерик и Ирен Жолио-Кюри открыли искусственную радиоактивность.

К этому времени Резерфорд приобрел славу величайшего физика-практика за всю историю физики, одного из гениальнейших людей своего времени.

В 1919 году Эрнест Резерфорд стал преемником Томсона, получив должности профессора экспериментальной физики Кембриджского университета и директора Кавендишской лаборатории. Через два года он стал профессором естественных наук в Королевском институте в Лондоне. Еще спустя два года, в 1923 году, Резерфорд становится президентом Британской ассоциации содействия развитию науки, а с 1925 по 1930 год является президентом Лондонского королевского общества. В 1930 году ученый был назначен председателем правительственного консультативного совета Управления научных и промышленных исследований.

Эрнест Резерфорд был не только гениальным ученым, но и талантливым организатором. Находясь на руководящих должностях, он привлекал к своим работам многих молодых физиков, удостоенных впоследствии Нобелевских премий. Перед ним склоняли голову все выдающиеся физики той эпохи. Когда коллеги отметили его способность всегда находиться «на гребне волны» научных исследований, он ответил: «А почему бы и нет? Ведь это я вызвал волну, не так ли?» Мало кто возражал против этого утверждения. Резерфорда считали своим учителем десятки ученых с мировым именем: П. Л. Капица, Г. Мозли, Дж. Чедвик, Дж. Кокрофт, М. Олифант, В. Гейтлер, О. Ган, Ю. Б. Харитон и др.

Несмотря на возраст и занятость, Резерфорд все время продолжал свои исследования. В 1920 году он предсказал существование нейтрона (открытого его учеником Джеймсом Чедвиком в 1932 году), существование атома водорода с атомной массой, равной двум (дейтерия), ввел понятие «протон», в 1933 году инициировал экспериментальную проверку взаимосвязи массы и энергии в ядерных процессах.

В своей последней экспериментальной работе в 1934 году Резерфорд совместно с Маркусом Олифантом и Паулем Хартеком открыл тритий – сверхтяжелый изотоп водорода.

До самой смерти Эрнест Резерфорд сохранял прекрасное расположение духа и отличался крепким здоровьем. Он блестяще производил в уме сложные математические вычисления, удивляя своих коллег и сотрудников.

После непродолжительной болезни знаменитый ученый умер в Кембридже 19 октября 1937 года и был похоронен в Вестминстерском аббатстве неподалеку от могилы Исаака Ньютона, Чарлза Дарвина и Майкла Фарадея.

Эрнест Резерфорд родился 30 августа 1871 г. в деревне Спринг Гроув (известной также под названием Брайтуотер) близ г. Нельсона, Новая Зеландия, в семье фермера Джеймса Резерфорда и его жены Марты Томсон (уроженки г. Хорнчёрч, графство Эссекс, Англия).

При рождении, Эрнеста, по ошибке, записали под именем Ёрнест (от англ. “earnest” – «серьёзный»). В детстве Эрнест ходит в школу г. Хэвлок, по окончании которой продолжает учёбу в колледже в г. Нельсоне. Он усердно трудится, чтобы поступить в Кентерберийский колледж, бывший подразделением Университета Новой Зеландии. В колледже Эрнест Резерфорд становится главой дискуссионного клуба и принимает активное участие в студенческой жизни.

В Кентерберийском колледже Резерфорд получает высшее образование, защищая звания бакалавра и магистра в области гуманитарных наук, а также бакалавра естественных наук, после чего, на протяжении двух лет, увлечённо занимается исследованиями в области электротехники. В 1895 г. он отправляется в Англию для повышения уровня образования, где с 1895 г. по 1898 г. трудится в Кавендишской лаборатории при Кембриджском университете. Он совершает значительный прорыв (и некоторое время держит рекорд) в обнаружении расстояния, которое определяет длину электромагнитной волны.

Труды, исследования и вклад в науку

В 1898 г. Резерфорд меняет Хью Лонгборна Каллендара на должности профессора физики, основанной благодаря покровительству Уильяма МакДональда, в Университете МакГилла. Именно здесь Резерфорд достигнет высот своей исследовательской деятельности. Его работа в Университете МакГилла увенчается получением в 1908 г. Нобелевской премии в области химии.

Резерфорд занимается глубинными исследованиями и практическим изучением явления радиоактивности. В этот период, в 1899 г., он вводит понятия альфа- и бета-частиц. Этот тип радиационного излучения учёный описывает как два отчётливых (легко различаемых) вида излучения потока частиц элементами торием и ураном. Основываясь на их проникающей способности, Резерфорд чётко излагает различия этих радиационных лучей.

В 1900 г. в Университете Новой Зеландии он получает степень доктора наук. С 1900 г. по 1903 г. к исследовательскому проекту Резерфорда на тему трансмутации элементов в Университете МакГилла присоединяется юный исследователь Фредерик Содди.

Резерфорд открывает и точно описывает, что радиация является следствием спонтанного разложения атомов. Учёный в мельчайших подробностях наблюдает, а в последствие и описывает, что образцу радиоактивного материала требуется определенное время для уменьшения его радиоактивности в 2 раза. Это время Резерфорд называет «периодом полураспада».

Это открытие в дальнейшем получит практическое применение: взяв за единицу измерения равномерную скорость распада вещества, будет определён возраста планеты Земля, оказавшейся намного старше, чем возраст, предполагаемый учёными того времени.

В 1903 г. Резерфорд обнаруживает, что радиация (уже открытая), излучаемая ещё безымянным радием (открытым в 1900 г. французским химиком Полом Виллардом) обладает отличительной чертой (от альфа- и бета-излучений), не описанной прежде. Он также замечает, что новый вид излучения обладает большой проникающей способность, и, не теряя времени, даёт ему самостоятельное название «гамма-излучение». В 1907 г. Резерфорда назначают на должность профессора физики Манчестерского университета. В Манчестере учёный продолжает работать с альфа-излучением. Совместно с Гансом Гейгером, он разрабатывает цинк-сульфидный отражающий экран и ионизационную камеру, предназначенную для подсчёта количества альфа-частиц.

В 1907 г. Резерфорд, вместе с Томасом Ройдсом, проводит химический опыт, заключающийся в прохождении альфа-лучей через узкое окно в вакуумную трубку. Лучи неизменно порождают в трубке искровой разряд, в результате чего образовывается спектр, меняющий свою природу аналогично альфа-лучам, накопившимся в трубке. Далее эксперимент показывает, как начинает образовываться чистый спектр газа гелия. Из этого следует, что альфа-лучи почти не ионизируют атомы, а точнее – ядра атомов, гелия.

В 1909 г. объединяет усилия с Гансом Гейгером и Эрнестом Марсденом и проводит опыт Гейгера-Марсдена, нацеленный на обнаружение и наглядную демонстрацию истинной ядерной природы атомов. Эксперимент проводится для получения чётко сформулированных результатов относительно свойств альфа-частиц. Резерфорд предлагает Гейгеру и Марсдену получить отклонение альфа-частиц на большие углы (предрешённых результатов опыта не было, поскольку, на момент его проведения, не существовало ни малейших теорий на этот счёт). Искомые отклонения были найдены, но носили единичный характер и ровную, чётко-организованную функцию угла отклонения. Истолкование и результаты этого эксперимента в 1911 г. выливаются в представление модели атома Резерфорда. Согласно его теории, даже маленькое положительно заряженное ядро имеет вращающиеся вокруг него электроны. В 1919 г. Резерфорд отправляется в Кавендишскую лабораторию, где проводит (первым в истории) опыт по трансмутации одного вещества в другое, превратив с помощью ядерной реакции азот в кислород. Этот опыт он осуществляет совместно с Нильсом Бором, выдвигая при этом теорию о существовании нейтронов и об их предположительном свойстве возмещать отталкивающее свойство положительно заряженных протонов, порождая силу ядерного притяжения, удерживающую ядро от распада.

В 1932 г. эту теорию существования нейтронов доказывает Джеймс Чедвик, получивший в 1935 г. Нобелевскую премию в области физики за это открытие.

Личная жизнь

В 1900 г. Резерфорд женится на Марии Георгине Ньютон. У них рождается дочь, Эйлин Мария.

Награды и почести

В 1908 г. Резерфорд получает Нобелевскую премию за революционные открытия и успешные исследования процесса распада веществ и следующих из него химических свойств радиоактивных веществ. В 1914 г. Резерфорда посвящают в рыцари. В 1916 г. учёного награждают медалью имени сэра Джеймса Гектора. В 1919 г. Резерфорд возвращается в Кавендишскую лабораторию при Кембриджском университете, где его назначают на пост руководителя лаборатории. В это время он становится научным наставником ряда исследователей – Джеймса Чедвика, Джона Дугласа Коккрофта, Эдварда Виктора Эпплтона и Томаса Синтона Уолтона, каждый из которых получил Нобелевскую премию за работы в области атомных реакций, открытия нейтрона, наглядных демонстраций и химических опытов по вопросам элементарных частиц и ионосферы. В 1925 г. Резерфорда награждают почётным орденом «За заслуги» перед Великобританией. В 1931 г. он получает почётный титул барона Резерфорда Нельсонского и Кембриджского в графстве Кембридж.

После смерти, Резерфорда удостаивают чести быть похороненным в Вестминстерском аббатстве, рядом с Дж. Дж. Томсоном и сэром Исааком Ньютоном.

Смерть

Эрнест Резерфорд страдал пупочной грыжей, и оперировать его, в знак особой чести (как носителю британского ордена «За заслуги»), надлежало только титулованному хирургу. Из-за долгих поисков подходящей кандидатуры, время было упущено, и 19 октября 1937 г. в больнице Резерфорд внезапно скончался.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку