Астрономия. Новый взгляд на неожиданно быстрое расширение вселенной

Звездное небо над головой долгое время было для человека символом вечности. Лишь в Новое время люди осознали, что «неподвижные» звезды на самом деле движутся, причем с огромными скоростями. В ХХ в. человечество свыклось с еще более странным фактом: расстояния между звездными системами – галактиками, не связанными друг с другом силами тяготения, постоянно увеличиваются.

И дело здесь не в природе галактик: сама Вселенная расширяется! Естествознанию пришлось расстаться с одним из своих основополагающих принципов: все вещи меняются в этом мире, но мир в целом всегда одинаков. Это можно считать важнейшим научным событием ХХ в.

Все началось, когда Альберт Эйнштейн создал общую теорию относительности. В ее уроках описаны фундаментальные свойства материи, пространства и времени. («относительный» по-латыни звучит как relativus, поэтому теории основанные на теории относительности Эйнштейна, называются релятивистскими).

Применив свою теорию ко Вселенной как целой системе, Эйнштейн обнаружил, что такого решения, которому соответствовала бы не меняющаяся со временем Вселенная, не получается. Этот не удовлетворил великого ученого.

Чтобы добиться стационарного решения своих уравнений, Эйнштейн ввел в них дополнительное слагаемое – так называемый ламбда-член. Однако до сих пор никто не смог найти какого-либо физического обоснования этого дополнительного члена.

В начале 20-х годов советский математик А. А. Фридман решил для Вселенной уравнения общей теории относительности, не накладывая условия стационарности. Он доказал, что могут существовать два состояния для Вселенной: расширяющийся мир и сжимающийся мир. Полученные Фридманом уравнения используют для описания эволюции Вселенной и в настоящее время.

Все эти теоретические рассуждения никак не связывались учеными с реальным миром, пока в 1929 г. американский астроном Эдвин Хаббл не подтвердил расширения видимой части Вселенной. Он использовал при этом эффект Доплера. Линии в спектре движущегося источника смещаются на величину, пропорциональную скорости его приближения или удаления, поэтому скорость галактики всегда можно вычислить по изменению положения ее спектральных линий.

Еще во втором десятилетии ХХ в. американский астроном Весто Слайфер, исследовав спектры нескольких галактик, заметил, что у большинства из них спектральные линии смещены в красную сторону. Это означало, что они удаляются от нашей Галактики со скоростями в сотни километров в секунду.

Хаббл определил расстояние до небольшого числа галактик и их скорости. Из его наблюдений следовало, что чем дальше находится галактика, тем с большей скоростью она от нас удаляется. Закон, по которому скорость удаления пропорциональна расстоянию, получил название закона Хаббла.

Означает ли это, что наша Галактика является центром, от которого и идет расширение? С точки зрения астрономов, такое невозможно. Наблюдатель в любой точке Вселенной должен увидеть ту же картину: все галактики имели бы красные смещения, пропорциональные расстояния до них. Само пространство как бы раздувается.

Вселенная расширяется, но уентр расширения отсутствует: из любого места картина расширения будет представляться той же самой.

Если на воздушном шарике нарисовать галактики, и начать надувать его, то расстояния между ними будут возрастать, причем тем быстрее, чем дальше они расположены друг от друга и разница лишь в том, что нарисованные галактики сами увеличиваются в размерах, реальные же звездные системы повсюду во Вселенной сохраняют свой объем. Это объясняется тем, что составляющие их звезды связаны между собой силами гравитации.

Факт постоянного расширения Вселенной установлен твердо. Самые далекие из известных галактик и квазаров имеют такое большое красное смещение, что длины волн всех линий в спектрах оказываются больше, чем у близких источников в 5 – 6 раз!

Но если Вселенная расширяется, то сегодня мы видим ее не такой, какой она была в прошлом. Миллиарды лет назад галактики располагались значительно ближе друг к другу. Еще раньше отдельных галактик просто не могло существовать, а еще ближе к началу расширения не могло быть даже звезд. Эта эпоха – начало расширения Вселенной – удалена от нас на 12 – 15 млрд лет.

Оценки возраста галактик пока слишком приближенны, чтобы уточнить эти цифры. Но надежно установлено, что самые старые звезды различных галактик имеют примерно одинаковый возраст. Следовательно, большинство звездных систем возникло в тот период, когда плотность вещества во Вселенной была значительно выше современной.

На начальной стадии все существо Вселенной имело настолько высокую плотность, что ее даже невозможно было себе представить. Идею о расширении Вселенной из сверхплотного состояния ввел в 1927 г. бельгийский астроном Жорж Леметр, а предложение, что первоначальное вещество было очень горячим, впервые высказал Георгий Антонович Гамов в 1946 г. Впоследствии эту гипотезу подтвердило открытие так называемого реликтового излучения. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим Взрывом. Но остается множество вопросов. Что привело к образованию ныне наблюдаемой Вселенной, к началу Взрыва? Почему пространство имеет три измерения, а время одно? Как в стремительно расширяющейся Вселенной смогли появиться стационарные объекты – звезды и галактики? Что было до начала Большого Взрыва? Над поисками ответов на эти и другие вопросы работают современные астрономы и физики.

Скопление галактик Abel85, расположенное на расстоянии примерно 740 млн световых лет от Земли, зарегистрировано рентгеновской обсерваторией Чандра. Пурпурное свечение - это газ, разогретый до нескольких миллионов градусов.

Иллюстрация к модели роста космических структур Вселенной. Изображены три возраста Вселенной: 0,9 млрд, 3,2 млрд и 13,7 млрд лет (нынешнее состояние).

Международная группа учёных под руководством Алексея Вихлинина из Института космических исследований РАН экспериментально подтвердила ускоренное расширение Вселенной новым независимым методом и восстановила картину её развития во времени. Сейчас в ИКИ РАН ведут работы по созданию новой орбитальной рентгеновской обсерватории, одной из задач которой будет определение уравнения состояния тёмной энергии с беспрецедентной точностью.

Алексей Вихлинин, выступая с докладом на конференции «Астрофизика высоких энергий сегодня и завтра», прошедшей в ИКИ РАН, рассказал, что в прошлом веке по наблюдениям далёких сверхновых звёзд было показано, что наша Вселенная расширяется с ускорением. Для объяснения этого ускорения ввели понятие «тёмной энергии» («невидимой энергии»). Её свойства оказались весьма необычными — так, например, тёмная энергия должна обладать отрицательным давлением, чтобы «расталкивать» Вселенную. Установление природы этой загадочной тёмной энергии — одна из главных задач физики, поскольку, согласно современным представлениям, именно тёмная энергия определяет развитие нашего мира.

В основе работы международной группы учёных из Европы и США лежало исследование распределения массивных скоплений галактик в пространстве — основных элементов крупномасштабной структуры Вселенной. (Крупномасштабную структуру можно представить как скопления галактик, соединённые филаментами

— скоплениями газа, между которыми находятся пустоты.) Тёмная энергия должна оказывать существенное влияние на рост крупномасштабной структуры, поскольку она противодействует силе гравитационного притяжения материи и препятствует образованию сгущений вещества на больших масштабах расстояний. В наибольшей степени это влияние отражается на скорости образования массивных скоплений галактик. Такие скопления содержат тысячи галактик, подобных нашей, и могут иметь массы порядка 10 14 масс Солнца.

Экспериментально обнаружено и подробно исследовано 86 наиболее массивных скоплений галактик во Вселенной, находящихся на расстоянии от нескольких сотен миллионов до нескольких миллиардов световых лет от Млечного Пути. Большая часть скоплений открыта на основании данных рентгеновского телескопа РОСАТ (Германия, НАСА). Измерения расстояний выполнены при помощи десятка оптических телескопов по всему миру: Keck, Magellan, NTT и др. Большое количество наблюдений проведено также при помощи российско-турецкого 1,5-метрового телескопа РТТ-150. Главный вклад в успех работы сделан орбитальной рентгеновской обсерваторией Чандра (США) — по её данным точно измерены массы скоплений.

На основе полученных результатов астрофизики восстановили картину развития Вселенной начиная примерно с 2/3 её возраста до настоящего времени, то есть в течение последних 5,5 миллиарда лет (что примерно соответствует возрасту Солнца). Результаты этого исследования показали, что рост крупномасштабной структуры в течение этого времени существенно замедлился.

Сила, с которой тёмная энергия «расталкивает» вещество, описывается параметром уравнения состояния тёмной энергии, имеющим физический смысл, сходный с жёсткостью пружины. Исследователи провели наиболее точное на сегодняшний день измерение этого параметра. Полученные результаты подразумевают, что уравнения общей теории относительности (только с добавлением космологической постоянной) хорошо работают на всех наблюдаемых расстояниях — от радиусов орбит планет в нашей Солнечной системе до размеров всей наблюдаемой части Вселенной.

ИКИ РАН в сотрудничестве с институтами Общества им. Макса Планка (Германия) и другими научными организациями сейчас ведёт работы по созданию орбитальной рентгеновской обсерватории «Спектр-рентген-гамма» (СРГ), запуск которой планируется в 2012 году. Обсерватория предназначена для полного обзора неба, в ходе которого, как ожидается, будет открыто порядка 100 тысяч скоплений галактик (то есть все массивные скопления галактик во Вселенной), примерно 3 млн ядер активных галактик (сверхмассивных чёрных дыр) и около 2 млн коронально-активных звёзд. На основе наблюдений массивных скоплений галактик предполагается более точно оценить скорость роста крупномасштабной структуры Вселенной, что, в свою очередь, позволит определить беспрецедентно точно уравнение состояния тёмной энергии.

Астрофизики считают, что изучение природы тёмной энергии позволит создать новую теорию вакуума, которая, возможно, будет распространена на другие физические явления. Не исключено, что в рамках новой теории окажется, что наше пространство имеет не четыре, а пять измерений.

Вселенная расширяется. Но в некотором смысле расширение пока непосредственно не наблюдается: теоретики строят различные модели, позволяющие описать его, но мы не видим, как космические объекты в реальном времени становятся всё дальше и дальше.

Необходимо значительно увеличить точность наблюдений, а с существующей техникой нам придётся ждать века или по крайней мере десятилетия, чтобы накопить данные, иллюстрирующие этот процесс.

Для построения модели, демонстрирующей расширение Вселенной, обычно сравнивают расширяющуюся Вселенную с надувающимся воздушным шаром. При этом мы допускаем, что вся "область наблюдения" доступна нам целиком и в одно мгновение. На самом деле, чем более далёкую галактику мы наблюдаем, тем больше времени нужно её свету для того, чтобы попасть на сетчатку нашего глаза. Следовательно, в момент испускания этого света галактика как бы находилась на поверхности "менее надутого" шара. Самые далёкие из наблюдаемых нами галактик видны в те времена, когда "шарик" был совсем маленьким. Таким образом, вследствие конечности скорости света мы видим сильно искажённую картину окружающего нас мира.

Особенностью этой модели расширяющейся Вселенной является как бы некий "взгляд со стороны". Мы как бы смотрим из "лишнего" измерения, да ещё вдобавок видим всё сразу, наблюдая процессы по единым "космическим часам", то есть разом охватываем всю Вселенную, получая информацию с бесконечной скоростью. Этот "взгляд бога" недоступен обычному наблюдателю.

Мы находимся на Земле, внутри Вселенной. Сигналы приходят к нам с конечной скоростью - со скоростью света. Поэтому мы видим удалённые объекты такими, какими они были в далёком прошлом. В астрономии красное смещение - сдвиг спектра в красную сторону. Это явление может быть выражением эффекта Доплера, гравитационного красного смещения или их комбинаций. В смещение линий в галактических спектрах вносит вклад как космологическое красное смещение, вызванное расширением пространства Вселенной, так и красное (или фиолетовое) смещение, связанное с эффектом Доплера вследствие собственного движения галактик.

После открытия красного смещения в спектрах удалённых галактик предположили, что оно вызвано чем-то вроде "утомления от долгой поездки": некий неизвестный процесс вынуждает фотоны терять энергию по мере удаления от источника света и поэтому "краснеть".

Но эта гипотеза не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. У сверхновых типа 1а, используемых для определения расстояний до галактик, угасание длится примерно две недели. За этот период времени излучается определённое количество фотонов. Гипотеза "усталости" говорит, что за время пути они потеряют энергию, но наблюдатель всё равно увидит поток фотонов длительностью в две недели. В расширяющемся же пространстве "растягиваются" не только сами фотоны (за счёт чего они теряют энергию), но и их поток. Поэтому, чтобы все они "добрались" до Земли, требуется более двух недель.

В космологии две проблемы с расстоянием: всё расположено очень далеко друг от друга и быстро движется. Пока свет дойдёт от источника до наблюдателя, их удалённость сильно изменится. При этом расстояние до объектов "прямо сейчас" не поддается прямому измерению, так как эта процедура занимает конечное (и, вообще говоря, довольно большое) время, связанное с распространением сигнала: мы просто не видим далёкие объекты такими, каковы они в данный момент. Это всё усложняет, поскольку, пользуясь бытовым опытом, мы привыкли представлять себе всё "таким, какое оно сейчас". В космологии расстояния и скорости "прямо сейчас" мы можем только рассчитать в рамках определённой модели или же получить их каким-то "окольным путём", но не с помощью современных методов наблюдения.

Поскольку Вселенная расширяется, её наблюдаемая область сейчас имеет радиус больше 14 млрд световых лет. Пока свет путешествует, пространство, которое он пересекает, расширяется. К моменту, когда он достигает нас, расстояние до испустившей его галактики становится больше, чем просто вычисленное по времени "путешествия" фотонов (приблизительно второе).

Многие люди помнят события вчерашнего дня лучше, чем позавчерашнего, а недельной давности - вообще не помнят. Зато некоторые воспоминания детства и юности для них сияют, как будто всё это случилось вчера. Если мы возьмём галактику типа нашей, то окажется, что вплоть до некоторого расстояния (а, глядя на далёкие объекты, мы смотрим в прошлое!) она будет выглядеть всё меньше и меньше. Но потом - о чудо! - видимый размер начнёт увеличиваться. Это происходит потому, что свет наблюдаемой галактики был испущен в эпоху молодости Вселенной, когда мы находились гораздо ближе. Соответственно, угловое расстояние до далёких объектов меняется таким же причудливым образом. Угол между лучами света не меняется при распространении в "плоской" вселенной. Поэтому угловое расстояние до космического объекта зависит только от того, как далеко он находился в момент излучения.

Собственное расстояние - физическое расстояние между объектами. Оно изменяется в соответствии с расширением Вселенной. Расстояние, о котором обычно говорится во всех статьях, новостях, равно пути света, пройденному от источник с момента излучения. Оно примерно равно собственному на сравнительно небольших расстояниях, где за время распространения сигнала Вселенная не успела заметно расшириться. Сопутствующие координаты привязаны к координатной сетке, расширяющейся вместе с расширением Вселенной. Относительно неё положение объектов остаётся неизменным, при этом собственные расстояния между ними увеличиваются в соответствии с изменением масштабного фактора. Важно, что угловое расстояние равно собственному расстоянию в момент испускания излучения.

До сих пор горизонт поднимался как "линия, где земля сходится с небом". По мере совершенствования наших представлений о Вселенной в лексиконе ученых начали появляться всё новые и новые "горизонты", достичь которые не представляется возможным (хотя бы потому, что максимально возможная скорость в нашем мире ограничена скоростью света). Горизонт частиц - расширяющаяся сфера, радиус которой определяется расстоянием до самого далёкого источника, в принципе наблюдаемого в данный момент времени (речь идёт о собственном расстоянии до объекта в момент приёма фотона, а не в момент излучения). Такой горизонт нельзя определить как скорость света, умноженную на время после начала расширения, так как, пока фотон летит, вселенная расширяется. Но если мы говорим о частицах как о галактиках, которые возникли в какой-то не слишком ранний момент эволюции вселенной, то такой горизонт будет и в ускоряющихся моделях. Есть он и в нашей Вселенной. Расстояние до горизонта событий - это расстояние (в настоящий момент) до частицы, до которой может дойти наш световой сигнал, посланный прямо сейчас. Мы наблюдаем галактики на красном смещении около 1,8. Свет от таких галактик идёт к нам 10 млрд лет.

В момент излучения они находились от нас в 5,7 млрд световых лет (собственное расстояние на момент излучения). Сейчас до них 16,1 млрд световых лет (собственное расстояние в данный момент), и сигнал, посланный нами к ним, никогда их не достигнет, если динамика Вселенной в будущем принципиально не изменится. И наоборот, мы никогда не увидим события, происходящие в них сейчас.

Получается, что расстояние до горизонта событий соответствует расстоянию до таких галактик в данный момент, но мы-то видим их сейчас такими, какими они были в далёком прошлом! В этом смысле мы не увидим горизонт событий, но можем сказать, что его положение соответствует современному положению галактик, наблюдаемых нами на красном смещении 1,8. Согласно закону Хаббла, скорость удаления далёких объектов прямо пропорциональна расстояниям до них. Здесь речь идёт о скорости изменения собственного расстояния в настоящий момент.

Расстояние, на котором скорость удаления равняется световой, называется "сферой Хаббла". Есть источники, которые и в момент излучения, и в настоящий момент находятся за её пределами, то есть их скорость убегания выше световой и тогда, и сейчас.

В современной космологической модели (с вкладом тёмной энергии около 70%) все наблюдаемые источники с красным смещением, превышающим примерно 1,5, в настоящий момент удаляются от нас быстрее скорости света. То есть относительные скорости точек, находящихся друг от друга на больших расстояниях, не ограничиваются скоростями света.

В гипотетической стационарной вселенной с началом во времени горизонт частиц, представляет собой сферу, расширяющуюся со скоростью света. Если через 5 млрд лет после "сотворения" этого мира в какой-нибудь из галактик появится наблюдатель, для него этот горизонт частиц окажется сферой радиусом в 5 млрд световых лет. Ещё через миллиард лет её радиус составит 6 млрд световых лет и т.д.

Представим себе первый фотон, излученный в "момент ноль". К его скорости движения, равной скорости света, добавляется ещё скорость расширения пространства. За время существования Вселенной этот фотон удалился от места его испускания на расстояние 46 млрд световых лет (примерно 13,7 млрд световых лет он пролетел "самостоятельно", остальное - за счёт расширения Вселенной). Таким образом, без учёта скорости расширения ему понадобилось бы 46 млрд лет для преодоления такого расстояния. Реликтовое излучение возникло, когда Вселенной было 380 тыс. лет. Сопутствующее красное смещение равно 1089. Сегодня собственное расстояние до источника, испустившего это излучение, - почти 46 млрд световых лет.

Наблюдатель может видеть лишь конечную часть своего мира. Нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Если пространство и дальше будет расширяться с ускорением, то и в сколь угодно отдалённом будущем нельзя будет проверить, как выглядит Вселенная за горизонтом частиц. А наши телескопы не могут "заглянуть" в эпоху, когда космическое пространство было заполнено плазмой и не содержало свободных фотонов.

По материалу Сергея Попова и Алексея Топоренского подготовил Сергей РЯБОШАПКО, г. Самара

НА ГЛАВНУЮ

Даже астрономы не всегда правильно понимают расширение Вселенной. Раздувающийся воздушный шар – старая, но хорошая аналогия расширения Вселенной. Галактики, расположенные на поверхности шара, неподвижны, но поскольку Вселенная расширяется, расстояние между ними возрастает, а размеры самих галактик не увеличиваются.

В июле 1965 г. ученые объявили об открытии явных признаков расширения Вселенной из более горячего и плотного исходного состояния. Они нашли остывающее послесвечение Большого взрыва – реликтовое излучение. С этого момента расширение и охлаждение Вселенной легло в основу космологии. Космологическое расширение позволяет понять, как формировались простые структуры и как они постепенно развивались в сложные. Спустя 75 лет после открытия расширения Вселенной многие ученые не могут проникнуть в его истинный смысл. Джеймс Пиблз (James Peebles), космолог из Принстонского университета, изучающий реликтовое излучение, писал в 1993 г. : «Мне кажется, что даже специалисты не знают, каково значение и возможности модели горячего Большого взрыва».

Известные физики, авторы учебников по астрономии и популяризаторы науки порою дают неверную или искаженную трактовку расширения Вселенной, которое легло в основу модели Большого взрыва. Что же мы имеем в виду, когда говорим, что Вселенная расширяется? Несомненно, сбивает с толку то обстоятельство, что теперь говорят об ускорении расширения, и это ставит нас в тупик.

ОБЗОР: КОСМИЧЕСКОЕ НЕДОРАЗУМЕНИЕ

* Расширение Вселенной – одна из фундаментальных концепций современной науки – до сих пор получает различное толкование.

* Не следует воспринимать термин «Большой взрыв» буквально. Он не был бомбой, взорвавшейся в центре Вселенной. Это был взрыв самого пространства, который произошел повсеместно, подобно тому, как расширяется поверхность надуваемого воздушного шара.

* Понимание различия между расширением пространства и расширением в пространстве крайне важно для того, чтобы понять, каков размер Вселенной, скорость разбегания галактик, а также возможности астрономических наблюдений и природы ускорения расширения, которое, вероятно, испытывает Вселенная.

* Модель Большого взрыва описывает лишь то, что случилось после него.

Что такое расширение?

Когда расширяется что-нибудь привычное, например, влажное пятно или Римская империя, то они становятся больше, их границы раздвигаются, и они начинают занимать больший объем в пространстве. Но Вселенная, похоже, не имеет физических ограничений, и ей некуда двигаться. Расширение нашей Вселенной очень похоже на надувание воздушного шара. Расстояния до далеких галактик увеличиваются. Обычно астрономы говорят, что галактики удаляются или убегают от нас, но не перемещаются в пространстве, как осколки «бомбы Большого взрыва». В действительности расширяется пространство между нами и галактиками, хаотически движущимися внутри практически неподвижных скоплений. Реликтовое излучение заполняет Вселенную и служит системой отсчета, подобной резиновой поверхности воздушного шара, по отношению к которой движение и может быть измерено.

Находясь вне шара, мы видим, что расширение его искривленной двухмерной поверхности возможно только потому, что она находится в трехмерном пространстве. В третьем измерении располагается центр шара, а его поверхность расширяется в окружающий его объем. Исходя из этого, можно было бы заключить, что расширение нашего трехмерного мира требует наличия у пространства четвертого измерения. Но согласно общей теории относительности Эйнштейна, пространство динамично: оно может расширяться, сжиматься и изгибаться.

Дорожная пробка

Вселенная самодостаточна. Не требуются ни центр, чтобы расширяться от него, ни свободное пространство с внешней стороны (где бы она ни находилась), чтобы туда расширяться. Правда, некоторые новейшие теории, такие как теория струн, постулируют наличие дополнительных измерений, но при расширении нашей трехмерной Вселенной они не требуются.

В нашей Вселенной, как и на поверхности воздушного шара, каждый объект отдаляется от всех остальных. Таким образом, Большой взрыв не был взрывом в пространстве, а скорее это был взрыв самого пространства, который не произошел в определенном месте и затем не расширялся в окружающую пустоту. Это произошло всюду одновременно.

НА ЧТО БЫЛ ПОХОЖ БОЛЬШОЙ ВЗРЫВ?

НЕВЕРНО : Вселенная родилась тогда, когда вещество, подобно бомбе, взорвалось в определенном месте. Давление было высоким в центре и низким в окружающей пустоте, что и вызвало разлет вещества.

ВЕРНО : Это был взрыв самого пространства, который привел вещество в движение. Наше пространство и время возникло в Большом взрыве и начало расширяться. Нигде не было центра, т.к. условия всюду были одинаковыми, никакого перепада давления, характерного для обычного взрыва, не было.

Если представить, что мы прокручиваем киноленту в обратном порядке, то увидим, как все области Вселенной сжимаются, а галактики сближаются, пока не столкнутся все вместе в Большом взрыве, как автомобили в дорожной пробке. Но сопоставление тут не полное. Если бы речь шла о происшествии, то вы могли бы объехать затор, услышав сообщения о нем по радио. Но Большой взрыв был катастрофой, которую невозможно избежать. Это похоже на то, как если бы поверхность Земли и все дороги на ней смялись, но автомобили оставались бы прежнего размера. В конце концов машины столкнулись бы, и никакое сообщение по радио не помогло бы предотвратить это. Так же и Большой взрыв: он произошел повсеместно, в отличие от взрыва бомбы, который происходит в определенной точке, а осколки разлетаются во все стороны.

Теория Большого взрыва не дает нам информации о размере Вселенной и даже о том, конечна она или бесконечна. Теория относительности описывает, как расширяется каждая область пространства, но ничего не говорится о размере или форме. Иногда космологи заявляют, что Вселенная когда-то была не больше грейпфрута, но они имеют в виду лишь ту ее часть, которую мы сейчас можем наблюдать.

У обитателей туманности Андромеды или других галактик свои наблюдаемые вселенные. Наблюдатели, находящиеся в Андромеде, могут видеть галактики, которые недоступны нам, просто из-за того, что они немного ближе к ним; зато они не могут созерцать те, которые рассматриваем мы. Их наблюдаемая Вселенная тоже была размером с грейпфрут. Можно вообразить, что ранняя Вселенная была похожа на кучу этих фруктов, безгранично простирающуюся во всех направлениях. Значит, представление о том, что Большой взрыв был «маленьким», ошибочно. Пространство Вселенной безгранично. И как его ни сжимай, оно таковым и останется.

Быстрее света

Ошибочные представления бывают связаны и с количественным описанием расширения. Скорость, с которой увеличиваются расстояния между галактиками, подчиняется простой закономерности, выявленной американским астрономом Эдвином Хабблом (Edwin Hubble) в 1929 г. : скорость удаления галактики v прямо пропорциональна его расстоянию от нас d, или v = Hd. Коэффициент пропорциональности H называется постоянной Хаббла и определяет скорость расширения пространства как вокруг нас, так и вокруг любого наблюдателя во Вселенной.

Некоторых сбивает с толку то, что не все галактики подчиняются закону Хаббла. Ближайшая к нам крупная галактика (Андромеда) вообще движется к нам, а не от нас. Такие исключения бывают, поскольку закон Хаббла описывает лишь среднее поведение галактик. Но каждая из них может иметь и небольшое собственное движение, поскольку галактики гравитационно воздействуют друг на друга, как, например, наша Галактика и Андромеда. Отдаленные галактики также имеют небольшие хаотические скорости, но при большом расстоянии от нас (при большом значении d) эти случайные скорости ничтожно малы на фоне больших скоростей удаления (v). Поэтому для далеких галактик закон Хаббла выполняется с высокой точностью.

Согласно закону Хаббла, Вселенная расширяется не с постоянной скоростью. Некоторые галактики удаляются от нас со скоростью 1 тыс. км/с, другие, находящиеся вдвое дальше, со скоростью 2 тыс. км/с, и т.д. Таким образом, закон Хаббла указывает, что, начиная с некоторого расстояния, называемого хаббловским, галактики удаляются со сверхсветовой скоростью. Для измеренного значения постоянной Хаббла это расстояние составляет около 14 млрд. световых лет.

Но разве частная теория относительности Эйнштейна не утверждает, что никакой объект не может иметь скорость выше скорости света? Такой вопрос ставил в тупик многие поколения студентов. А ответ состоит в том, что частная теория относительности применима лишь к «нормальным» скоростям – к движению в пространстве. В законе Хаббла речь идет о скорости удаления, вызванного расширением самого пространства, а не движением в пространстве. Этот эффект общей теории относительности не подчиняется частной теории относительности. Наличие скорости удаления выше скорости света никак не нарушает частную теорию относительности. По-прежнему верно, что никто не может догнать луч света.

МОГУТ ЛИ ГАЛАКТИКИ УДАЛЯТЬСЯ СО СКОРОСТЬЮ ВЫШЕ СКОРОСТИ СВЕТА?

НЕВЕРНО : Частная теория относительности Эйнштейна запрещает это. Рассмотрим область пространства, содержащую несколько галактик. Из-за ее расширения галактики удаляются от нас. Чем дальше галактика, тем больше ее скорость (красные стрелки). Если скорость света – предел, то скорость удаления должна в итоге стать постоянной.

ВЕРНО : Разумеется, могут. Частная теория относительности не рассматривает скорость удаления. Скорость удаления бесконечно возрастает с рассто- янием. Дальше некоторого расстояния, называемого хаббловским, она превышает скорость света. Это не является нарушением теории относительности, пос- кольку удаление вызвано не движением в простран- стве, а расширением самого пространства.

МОЖНО ЛИ УВИДЕТЬ ГАЛАКТИКИ, УДАЛЯЮЩИЕСЯ БЫСТРЕЕ СВЕТА?

НЕВЕРНО : Конечно нет. Свет от таких галактик улетает вместе с ними. Пусть галактика находится за пределом хаббловского расстояния (сфера), т.е. удаляется от нас быстрее скорости света. Она испускает фотон (помечено желтым цветом). Пока фотон летит сквозь пространство, само оно расширяется. Расстояние до Земли увеличивается быстрее, чем движется фотон. Он никогда не достигнет нас.

ВЕРНО : Конечно можно, поскольку скорость расширения изменяется со временем. Сначала фотон действительно сносится расширением. Однако хаббловское расстояние не постоянно: оно увеличивается, и в конце концов фотон может попасть в сферу Хаббла. Как только это случится, фотон будет двигаться быстрее, чем удаляется Земля, и он сможет достичь нас.

Растяжение фотонов

Первые наблюдения, показывающие, что Вселенная расширяется, были сделаны между 1910 и 1930 г. В лаборатории атомы испускают и поглощают свет всегда на определенных длинах волн. То же наблюдается и в спектрах далеких галактик, но со смещением в длинноволновую область. Астрономы говорят, что излучение галактики испытывает красное смещение. Объяснение простое: при расширении пространства световая волна растягивается и поэтому ослабевает. Если в течение того времени, пока световая волна дошла до нас, Вселенная расширилась вдвое, то и длина волны удвоилась, а ее энергия ослабла в два раза.

ГИПОТЕЗА УСТАЛОСТИ

Каждый раз, когда Scientific American публикует статью по космологии, многие читатели пишут нам, что, по их мнению, галактики на самом деле не удаляются от нас и что расширение пространства – иллюзия. Они полагают, что красное смещение в спектрах галактик вызвано чем-то вроде «утомления» от долгой поездки. Некий неизвестный процесс вынуждает свет, распространяясь сквозь пространство, терять энергию и поэтому краснеть.

Данной гипотезе уже более полувека, и на первый взгляд она выглядит разумной. Но она совершенно не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. Весь процесс длится примерно две недели у сверхновых того типа, который астрономы используют для определения расстояний до галактик. За этот период времени сверхновая излучает поток фотонов. Гипотеза усталости света говорит, что за время пути фотоны потеряют энергию, но наблюдатель все равно получит поток фотонов длительностью в две недели.

Однако в расширяющемся пространстве не только сами фотоны растягиваются (и поэтому теряют энергию), но и их поток также растягивается. Поэтому требуется более двух недель, чтобы все фотоны добрались до Земли. Наблюдения подтверждают такой эффект. Вспышка сверхновой в галактике с красным смещением 0,5 наблюдается три недели, а в галактике с красным смещением 1 – месяц.

Гипотеза усталости света противоречит также наблюдениям спектра реликтового излучения и измерениям поверхностной яркости далеких галактик. Пришло время отправить на покой «утомленный свет» (Чарльз Линевивер и Тамара Дэвис).

Сверхновые звезды, как эта в скоплении галактик в Деве, помогают измерять космическое расширение. Их наблюдаемые свойства исключают альтернативные космологические теории, в которых пространство не расширяется.

Процесс можно описать в терминах температуры. Испускаемые телом фотоны имеют распределение по энергии, которое в целом характеризуют температурой, указывающей, насколько тело горячее. Когда фотоны движутся в расширяющемся пространстве, они теряют энергию и их температура снижается. Таким образом, Вселенная при расширении охлаждается, как сжатый воздух, вырывающийся из баллона аквалангиста. К примеру, реликтовое излучение сейчас имеет температуру около 3 К, тогда как оно родилось при температуре около 3000 К. Но с того времени Вселенная увеличилась в размере в 1000 раз, а температура фотонов понизилась во столько же раз. Наблюдая газ в далеких галактиках, астрономы прямо измеряют температуру этого излучения в далеком прошлом. Измерения подтверждают, что Вселенная со временем охлаждается.

В связи между красным смещением и скоростью также существуют некоторые противоречия. Красное смещение, вызванное расширением, часто путают с более знакомым красным смещением, вызванным эффектом Доплера, который обычно делает звуковые волны более длинными, если источник звука удаляется. То же верно и для световых волн, которые становятся более длинными, если источник света отдаляется в пространстве.

Доплеровское красное смещение и космологическое красное смещение – вещи абсолютно разные и описываются различными формулами. Первая вытекает из частной теории относительности, которая не принимает во внимание расширение пространства, а вторая следует из общей теории относительности. Эти две формулы почти одинаковы для близлежащих галактик, но различаются для отдаленных.

Согласно формуле Доплера, если скорость объекта в пространстве приближается к скорости света, то его красное смещение стремится к бесконечности, а длина волны становится слишком большой и поэтому недоступной для наблюдения. Если бы это было верно для галактик, то самые отдаленные видимые объекты на небе удалялись бы со скоростью, заметно меньшей скорости света. Но космологическая формула для красного смещения приводит к другому выводу. В рамках стандартной космологической модели галактики с красным смещением около 1,5 (т.е. принимаемая длина волны их излучения на 50% больше лабораторного значения) удаляются со скоростью света. Астрономы уже обнаружили около 1000 галактик с красным смещением больше 1,5. А значит, нам известно около 1000 объектов, удаляющихся быстрее скорости света. Реликтовое излучение приходит с еще большего расстояния и имеет красное смещение около 1000. Когда горячая плазма молодой Вселенной испускала принимаемое нами сегодня излучение, она удалялась от нас почти в 50 раз быстрее скорости света.

Бег на месте

Трудно поверить, что мы можем видеть галактики, движущиеся быстрее скорости света, однако это возможно из-за изменения скорости расширения. Вообразите луч света, идущий к нам с расстояния большего, чем расстояние Хаббла (14 млрд. световых лет). Он движется к нам со скоростью света относительно своего местоположения, но само оно удаляется от нас быстрее скорости света. Хотя свет устремляется к нам с максимально возможной скоростью, он не может угнаться за расширением пространства. Это напоминает ребенка, пытающегося бежать в обратную сторону по эскалатору. Фотоны на хаббловском расстоянии перемещаются с максимальной скоростью, чтобы оставаться на прежнем месте.

Можно подумать, что свет из областей, удаленных дальше расстояния Хаббла, никогда не сможет дойти до нас и мы его никогда не увидим. Но расстояние Хаббла не остается неизменным, поскольку постоянная Хаббла, от которой оно зависит, меняется со временем. Эта величина пропорциональна скорости разбегания двух галактик, деленной на расстояние между ними. (Для вычисления можно использовать любые две галактики.) В моделях Вселенной, согласующихся с астрономическими наблюдениями, знаменатель увеличивается быстрее числителя, поэтому постоянная Хаббла уменьшается. Следовательно, расстояние Хаббла растет. А раз так, свет, который первоначально не достигал нас, может со временем оказаться в пределах хаббловского расстояния. Тогда фотоны окажутся в области, удаляющейся медленнее скорости света, после чего они смогут добраться до нас.

ДЕЙСТВИТЕЛЬНО ЛИ КОСМИЧЕСКОЕ КРАСНОЕ СМЕЩЕНИЕ – ЭТО ДОПЛЕРОВСКОЕ СМЕЩЕНИЕ?

НЕВЕРНО : Да, потому что удаляющиеся галактики движутся в пространстве. В эффекте Доплера световые волны растягиваются (становясь более красными), когда их источник удаляется от наблюдателя. Длина волны света не меняется во время его путешествия сквозь пространство. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики.

ВЕРНО : Нет, красное смещение не имеет никакого отношения к эффекту Доплера. Галактика почти неподвижна в пространстве, поэтому испускает свет одинаковой длины волны во всех направлениях. За время пути длина волны становится больше, поскольку пространство расширяется. Поэтому свет постепенно краснеет. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики. Космическое красное смещение отличается от доплеровского смещения, что подтверждают наблюдения.

Однако галактика, пославшая свет, может продолжать удаляться со сверхсветовой скоростью. Таким образом, мы можем наблюдать свет от галактик, которые, как и прежде, всегда будут удаляться быстрее скорости света. Одним словом, хаббловское расстояние не фиксировано и не указывает нам границы наблюдаемой Вселенной.

А что в действительности отмечает границу наблюдаемого пространства? Здесь тоже происходит некая путаница. Если бы пространство не расширялось, то самый отдаленный объект мы могли бы наблюдать теперь на расстоянии около 14 млрд. световых лет от нас, т.е. на расстоянии, которое свет преодолел за 14 млрд. лет, прошедших с момента Большого взрыва. Но поскольку Вселенная расширяется, пространство, пересеченное фотоном, расширилось за время его пути. Поэтому текущее расстояние до самого удаленного из наблюдаемых объектов примерно втрое больше – около 46 млрд. световых лет.

Раньше космологи думали, что мы живем в замедляющейся Вселенной и поэтому можем наблюдать все больше и больше галактик. Однако в ускоряющейся Вселенной мы отгорожены границей, вне которой никогда не увидим происходящие события – это космический горизонт событий. Если свет от галактик, удаляющихся быстрее скорости света, достигнет нас, значит, расстояние Хаббла увеличится. Но в ускоряющейся Вселенной его увеличение запрещено. Удаленное событие может послать луч света в нашем направлении, но этот свет навсегда останется за пределом расстояния Хаббла из-за ускорения расширения.

Как видим, ускоряющаяся Вселенная напоминает черную дыру, тоже имеющую горизонт событий, извне которого мы не получаем сигналов. Нынешнее расстояние до нашего космического горизонта событий (16 млрд. световых лет) целиком лежит в пределах нашей наблюдаемой области. Свет, испущенный галактиками, находящимися сейчас дальше космического горизонта событий, никогда не сможет достигнуть нас, т.к. расстояние, которое сейчас соответствует 16 млрд. световых лет, будет расширяться слишком быстро. Мы сможем увидеть события, происходившие в галактиках прежде, чем они пересекли горизонт, но о последующих событиях мы не узнаем никогда.

Во Вселенной расширяется все?

Люди часто думают, что если пространство расширяется, то и все в нем тоже расширяется. Но это неверно. Расширение как таковое (т.е. по инерции, без ускорения или замедления) не производит никакой силы. Длина волны фотона увеличивается вместе с ростом Вселенной, поскольку в отличие от атомов и планет фотоны не связанные объекты, размеры которых определяются равновесием сил. Изменяющаяся скорость расширения действительно вносит новую силу в равновесие, но и она не может заставить объекты расширяться или сжиматься.

Например, если бы гравитация стала сильнее, ваш спинной мозг сжался бы, пока электроны в позвоночнике не достигли бы нового положения равновесия, чуть ближе друг к другу. Ваш рост немного уменьшился бы, но сжатие на этом прекратилось бы. Точно так же, если бы мы жили во Вселенной с преобладанием сил тяготения, как еще несколько лет назад считало большинство космологов, то расширение замедлялось бы, а на все тела действовало бы слабое сжатие, заставляющее их достигать меньшего равновесного размера. Но, достигнув его, они бы больше не сжимались.

НАСКОЛЬКО ВЕЛИКА НАБЛЮДАЕМАЯ ВСЕЛЕННАЯ?

НЕВЕРНО : Вселенной 14 млрд. лет, поэтому наблюдаемая ее часть должна иметь радиус 14 млрд. световых лет.Рассмотрим самую далекую из наблюдаемых галактик – ту, чьи фотоны, испущенные сразу после Большого взрыва, только теперь достигли нас. Световой год – это расстояние, проходимое фотоном за год. Значит, фотон преодолел 14 млрд. световых лет

ВЕРНО : Поскольку пространство расширяется, наблюдаемая область имеет радиус больше, чем 14 млрд. световых лет. Пока фотон путешествует, пространство, которое он пересекает, расширяется. К моменту, когда он достигает нас, расстояние до испустившей его галактики становится больше, чем просто вычисленное по времени полета, – приблизительно втрое больше

Фактически же расширение ускоряется, что вызвано слабой силой, «раздувающей» все тела. Поэтому связанные объекты имеют размеры немного больше, чем были бы в неускоряющейся Вселенной, поскольку равновесие сил достигается у них при немного большем размере. На поверхности Земли ускорение, направленное наружу, от центра планеты, составляет мизерную долю ($10^{–30}$) нормального гравитационного ускорения к центру. Если это ускорение неизменно, то оно не заставит Землю расширяться. Просто планета принимает чуть больший размер, чем он был бы без силы отталкивания.

Но все изменится, если ускорение не постоянно, как полагают некоторые космологи. Если отталкивание увеличивается, то это может в конце концов вызвать разрушение всех структур и привести к «Большому разрыву», который произошел бы не из-за расширения или ускорения как такового, а потому что ускорение ускорялось бы.

А ОБЪЕКТЫ ВО ВСЕЛЕННОЙ ТОЖЕ РАСШИРЯЮТСЯ?

НЕВЕРНО : Да. Расширение заставляет Вселенную и все находящееся в ней увеличиваться. В качестве объекта рассмотрим скопление галактик. Раз Вселенная становится больше, то и скопление – также. Граница скопления (желтая линия) расширяется.

ВЕРНО : Нет. Вселенная расширяется, но связанные объекты в ней не делают этого. Соседние галактики сначала удаляются, но в конечном счете их взаимное притяжение пересиливает расширение. Формируется скопление такого размера, которое соответствует его равновесному состоянию.

По мере того как новые точные измерения помогают космологам лучше понять расширение и ускорение, они могут задаться еще более фундаментальными вопросами о самых ранних мгновениях и наибольших масштабах Вселенной. Чем было вызвано расширение? Многие космологи считают, что в этом виноват процесс, называемый «инфляцией» (раздуванием), особый тип ускоряющегося расширения. Но возможно, это лишь частичный ответ: чтобы она началась, похоже, Вселенная уже должна была расширяться. А что относительно наибольших масштабов за пределом наших наблюдений? Расширяются ли разные части Вселенной по-разному, так, что наша Вселенная – это всего лишь скромный инфляционный пузырь в гигантской сверхвселенной? Никто не знает. Но мы надеемся, что со временем мы сможем прийти к пониманию процесса расширения Вселенной.

ОБ АВТОРАХ:
Чарльз Линевивер (Charles H. Lineweaver) и Тамара Дэвис (Tamara M. Davis) – астрономы из австралийской обсерватории Маунт-Стромло. В начале 1990-х гг. в Калифорнийском университете в Беркли Линевивер входил в группу ученых, открывших с помощью спутника COBE флуктуации реликтового излучения. Он защитил диссертацию не только по астрофизике, но и по истории и английской литературе. Дэвис работает над созданием космической обсерватории Supernova/Acceleration Probe (Исследователь сверхновых звезд и ускорения).

ЗАМЕЧАНИЯ К СТАТЬЕ «ПАРАДОКСЫ БОЛЬШОГО ВЗРЫВА»
Профессор Засов Анатолий Владимирович, физ. ф-т МГУ: Все недоразумения, с которыми спорят авторы статьи, связаны с тем, что для наглядности чаще всего рассматривают расширение ограниченного объема Вселенной в жесткой системе отсчета (причем расширение достаточно маленькой области, чтобы не учитывать разность хода времени на Земле и на далеких галактиках в земной системе отсчета). Отсюда представление и о взрыве, и о доплеровском смещении, и распространенная путаница со скоростями движения. Авторы же пишут, и пишут правильно, как все выглядит в неинерциальной (сопутствующей) системе координат, в которой обычно работают космологи, хотя в статье прямо не говорится об этом (в принципе, все расстояния и скорости зависят от выбора системы отсчета, и здесь всегда есть некий произвол). Единственно, что написано нечетко, так это то, что не определено, что же в расширяющейся Вселенной понимается под расстоянием. Сначала у авторов это скорость света, умноженная на время распространения, а далее говорится, что необходим еще учет расширения, которое удалило галактику еще больше, пока свет был в пути. Таким образом, расстояние уже понимается как скорость света, умноженная на время распространения, которое он потратил бы, если бы галактика перестала удаляться и излучила свет сейчас. В действительности все сложнее. Расстояние – величина модельно зависимая и непосредственно из наблюдений не получаемая, поэтому космологи без него прекрасно обходятся, заменяя красным смещением. Но может быть, более строгий подход здесь и неуместен.