Изоферменты: биологическая роль. Изоферменты, их происхождение, биологическое значение, привести примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней

HHHH HHHM HHMM HMMM MMMM

ЛДГ1,2

ЛДГ4,5

Изоферменты, их природа, биологическая роль, строение ЛДГ.

Изоферменты - это группа родственных ферментов, катализирующих одну и ту же реакцию. Они происходят из одного предшественника за счет дупликациии гена с последующей мутацией образуемых аллелей. Они отличаются между собой:

1) скорстью катализа;

3) условиями протекания реакции;

4) чувствительностью к регуляторам, факторам среды. (Более или менее устойчивы к ингибиторам);

5) сродством к субстрату;

6) особенностями структуры молекулы, ее ИЭТ, Mr, размерами и зарядом.

Изоферменты имеют адаптивное значение, т. е. придают специфику метаболизма.

Изоферменты обеспечивают межорганную связь, например, в процессе мышечной деятельности.

В миокарде и печени существуют различные изоферменты ЛДГ, которые обеспечивают метаболизм лактата:

в печени: ПВК -----> лактат

в сердце: лактат ------> ПВК

ЛДГ - олигомерный фермент, состоящий из 4-х субъединиц 2 типов.

H (heart) и M (muscle).

Существует 5 изоферментных форм:

H4 H3M H2M2 HM3 M4

ЛДГ1, ЛДГ2, ЛДГ3, ЛДГ4, ЛДГ5.

Поскольку H-протомеры несут более выраженный отрицательный заряд, то изофермент H4 (ЛДГ1) будет мигрировать при электрофорезе с наибольшей скоростью к аноду.

С наименьшей скоростью к аноду будет двигаться М4.

Остальные изоферменты занимают промежуточное положение.

Изоферменты ЛДГ локализованы в различных тканях:

ЛДГ1,2 ----> мозг, аэробные ткани (миокард).

ЛДГ3 ----> лейкозные клетки.

ЛДГ4,5 ----> анэробные ткани: мышечная, скелетная.

Изоферменты появляются на различных этапах онтогенеза и реализуют программу индивидуального развития.

Изоферментный профиль меняется в процессе развития.

При патологиях имеется существенный изоферментный сдвиг.

Биохимия - это наука, изучающая качественный и количественный состав, а также пути, способы, закономерности, биологическую и физиологическую роль превращения вещества, энергии и информации в живом организме.

Формирование биологической химии как самостоятельной дисциплины в системе биологических наук было длительным и сложным процессом. Современная биохимия сформировалась на рубеже ХIХ и ХХ вв. в недрах органической химии и физиологии, поэтому в ХIХ в. она называлась физиологической химией. Термин биохимия был предложен в 1858 году австрийским врачом и химиком Винцентом Клетцинским.

История биохимии отражает сложный путь познания человеком окружающего органического мира, истоки которого уходят во времена античности. В те времена гениальные пророческие идеи причудливо переплетались с наивными представлениям об окружающем мире. Так, например, Аристотель полагал, что живые существа образуются из сочетания пассивного, не имеющей жизни, начала - «материи» с активным началом - «формой», которая формирует тело и поддерживает в нем жизнь.


В последующем неоплатоники развивая эти идеи сформулировали понятие о «жизненной силе», «животворящем духе» и т.д., которые в различных модификациях существовали и в средние века. В VII – X веках в Европе с развитием алхимии стал накапливаться материал о составе сложных органических соединений.

Эпоха Возрождения характеризуется динамическим восприятием окружающего мира, которое превратило науку из ритуально-магической в открытую. Наука рассматривала человеческое тело как сложную механическую машину. Наш выдающийся современник, английский философ и историк науки Дж. Бернал так характеризует ту эпоху: «... врачи свободно общались с мастерами-художниками, математиками, астрономами и инженерами. По сути дела, многие из них занимались некоторыми из этих профессий. Так, например, Коперник получил образование и практиковал как врач...».

Именно это привело науку к новой ступени - живое стали оценивать химическими категориями. В XVI - XVII веках получила развитие ятрохимия (врачебная химия), важнейшим представителем которой был Парацельс (1493-1541), считавший, что в основе всех заболеваний лежат нарушения хода химических процессов в организме, поэтому лечить их надо тоже химическими веществами. Ятрохимия много дала практической медицине и способствовала ее сближению с химией.

Середина ХVII - конец ХVIII вв является эмпирическим периодом развития органической химии которая по определению великого шведского химика Й. Берцелиуса была химией «растительных и животных веществ». За это время произошло накопление огромного фактического материала, но еще не возникло теоретических, обобщающих представлений. Практические потребности человеческой деятельности (получение из природного сырья лекарств, масел, смол, красителей и т.д.) явились основной причиной, побуждающей к изучению органических соединений.

Совершенствование экспериментальных методов способствовало выделению индивидуальных органических соединений из растений (щавелевая, яблочная, лимонная и др. кислоты) и продуктов жизнедеятельности животных организмов (мочевина, мочевая и гиппуровая кислоты).

Следующий период - аналитический (конец ХVIII - середина ХIХ вв. - ознаменован исследованиями по установлению состава веществ, в результате которых стало очевидно, что все органические соединения содержат углерод. Вот лишь некоторые достижения этого периода:

В 1828 г. Ф. Вёлер впервые синтезировал мочевину, открыв тем самым эпоху органического синтеза.

В 1839 г Ю. Либих установил, что в состав пищи входят белки, жиры и углеводы.

В 1845 г. Г. Кольбе синтезировал уксусную кислоту

В 1854 г М. Бертло синтезировал жиры.

В 1861 г А.М. Бутлеров синтезировал углеводы.

Подводя итоги развития биохимии в ХIХ в. отметим, что основными факторами ее формирования было развитие химии важнейших природных соединений - липидов, углеводов и особенно белков, первые успехи энзимологии, разработка основных положений о многоступенчатости обмена веществ и роли ферментов в этих процессах. Биологическая химия того времени ставила своей главной целью изучение методами химии не суммарных процессов обмена веществ, а превращение в организме каждого отдельного соединения и разработка представлений о всех деталях обменных процессов в совокупности.

Наиболее интенсивно биохимия стала развивать в ХХ веке и особенно в последние десятилетия. В первой половине ХХ в. были сделаны важнейшие открытия, которые позволили построить общую схему обмена веществ, установить природу ферментов и исследовать их важнейшие свойства, значительно расширить знания об основных биологически активных соединениях. В 40-50-е годы интенсивно развивались и усовершенствовались методы биохимических исследований определившие в последующие десятилетия формирование отдельных направлений биохимии ставших самостоятельными науками - биоорганической химии, молекулярной биологии, молекулярной генетики, биотехнологии и др.

В последующем, при рассмотрении отдельных разделов биохимии, мы будем касаться их исторических аспектов, сейчас же кратко рассмотрим основные исторические этапы развития отечественной биологической химии.

8.7.1. В клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. При помощи внутриклеточных мембран клетка разделена на отсеки или компартменты (рисунок 8.18). В каждом из них осуществляются строго определенные биохимические процессы и сосредоточены соответствующие ферменты или полиферментные комплексы. Вот несколько характерных примеров.

Рисунок 8.18. Внутриклеточное распределение ферментов различных метаболических путей.

В лизосомах сосредоточены преимущественно разнообразные гидролитические ферменты. Здесь протекают процессы расщепления сложных органических соединений на их структурные компоненты.

В митохондриях находятся сложные системы окислительно-восстановительных ферментов.

Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимосвязь дихотомического и апотомического путей распада углеводов.

В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки.

В клеточном ядре локализованы в основном нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот.

8.7.2. Распределение ферментов по субклеточным органеллам изучают после предварительного фракционирования клеточных гомогенатов путем высокоскоростного центрифугирования, определяя содержание ферментов в каждой фракции.

Локализацию данного фермента в ткани или клетке часто удается установить in situ гистохимическими методами («гистоэнзимология»). Для этого тонкие (от 2 до 10 мкм) срезы замороженной ткани обрабатывают раствором субстрата, к которому специфичен данный фермент. В тех местах, где находится фермент, образуется продукт катализируемой этим ферментом реакции. Если продукт окрашен и нерастворим, он остается на месте образования и позволяет локализовать фермент. Гистоэнзимология дает наглядную и в известной мере физиологичную картину распределения ферментов.

Ферментные системы ферментов, сосредоточенные во внутриклеточных структурах, тонко координированы друг с другом. Взаимосвязь катализируемых ими реакций обеспечивает жизнедеятельность клеток, органов, тканей и организма в целом.

При исследовании активности различных ферментов в тканях здорового организма можно получить картину их распространения. Оказывается, что некоторые ферменты широко распространены во многих тканях, но в разных концентрациях, а другие очень активны в экстрактах, полученных из одной или нескольких тканей, и практически отсутствуют в остальных тканях организма.

Рисунок 8.19. Относительная активность некоторых ферментов в тканях человека, выраженная в процентах от активности в ткани с максимальной концентрацией данного фермента (Мосс, Баттерворт, 1978).

8.7.3. Понятие об энзимопатиях. В 1908 году английский врач Арчибальд Гаррод высказал предположение, что причиной ряда заболеваний может являться отсутствие какого-либо из ключевых ферментов, участвующих в обмене веществ. Он ввёл понятие "inborn errors of metabolism" (врождённый дефект обмена веществ). В дальнейшем эта теория была подтверждена новыми данными, полученными в области молекулярной биологии и патологической биохимии.

Информация о последовательности аминокислот в полипептидной цепи белка записана в соответствующем участке молекулы ДНК в виде последовательности тринуклеотидных фрагментов - триплетов или кодонов. Каждый триплет кодирует определённую аминокислоту. Такое соответствие называется генетическим кодом. Причём некоторые аминокислоты могут быть закодированы при помощи нескольких кодонов. Существуют также специальные кодоны, являющиеся сигналами для начала синтеза полипептидной цепи и его прекращения. К настоящему времени генетический код полностью расшифрован. Он является универсальным для всех видов живых организмов.

Реализация информации, заложенной в молекуле ДНК, включает несколько этапов. Сначала в клеточном ядре в процессе транскрипции синтезируется матричная РНК (мРНК), поступающая в цитоплазму. В свою очередь, мРНК служит матрицей для трансляции - синтеза полипептидных цепей на рибосомах. Таким образом, природа молекулярных болезней определяется нарушением структуры и функции нуклеиновых кислот и контролируемых ими белков.

8.7.4. Поскольку информация о структуре всех белков клетки содержится в последовательности нуклеотидов ДНК, а каждая аминокислота определяется триплетом нуклеотидов, изменение первичной структуры ДНК может в конечном счёте оказать глубокое влияние на синтезируемый белок. Подобные изменения происходят за счёт ошибок репликации ДНК, когда одно азотистое основание заменяется другим, либо в результате действия радиации или при химической модификации. Все возникшие таким образом наследуемые дефекты называются мутациями . Они могут приводить к неправильному считыванию кода и делеции (выпадению) ключевой аминокислоты, замене одной аминокислоты другой, преждевременной остановке белкового синтеза или добавлению аминокислотных последовательностей. Учитывая зависимость пространственной упаковки белка от линейной последовательности в нём аминокислот, можно полагать, что подобные дефекты способны изменить структуру белка, а значит, и его функцию. Тем не менее, многие мутации обнаруживаются только в лабораторных условиях и не оказывают вредного воздействия на функции белка. Таким образом, ключевым моментом является локализация изменений в первичной структуре. Если положение замененной аминокислоты окажется критическим для формирования третичной структуры и образования каталитического центра фермента, то мутация является серьёзной и может проявиться как заболевание.

Последствия недостаточности одного фермента в цепи реакций обмена веществ могут проявляться по-разному. Предположим, что превращение соединения A в соединение B катализирует фермент Е и что соединение C встречается на альтернативном пути превращений (рисунок 8.20):

Рисунок 8.20. Схема альтернативных путей биохимических превращений.

Последствиями недостаточности фермента могут быть следующие явления:

  1. недостаточность продукта ферментативной реакции (B ). В качестве примера можно указать на снижение содержания глюкозы в крови при некоторых формах гликогенозов;
  2. накопление вещества (A ), превращение которого катализирует фермент (например, гомогентизиновая кислота при алкаптонурии). При многих лизосомных болезнях накопления, вещества, в норме подвергающиеся гидролизу в лизосомах, накапливаются в них в связи с недостаточностью одного из ферментов;
  3. отклонение на альтернативный путь с образованием некоторых биологически активных соединений (C ). К этой группе явлений относится экскреция с мочой фенилпировиноградной и фенилмолочной кислот, образующихся в организме больных фенилкетонурией в результате активации вспомогательных путей распада фенилаланина.

Если метаболическое превращение в целом регулируется по принципу обратной связи конечным продуктом, то эффекты двух последних типов аномалий будут более значительными. Так, например, при порфириях (врождённых нарушениях синтеза гема) устраняется подавляющего эффекта гема на начальные реакции синтеза, что приводит к образованию избыточных количеств промежуточных продуктов метаболического пути, которые обладают токсическим действием на клетки кожи и нервной системы.

Факторы внешней среды могут усиливать или даже полностью определять клинические проявления некоторых врождённых нарушений обмена веществ. Например, у многих пациентов с недостаточностью глюкозо-6-фосфатдегидрогеназы заболевание начинается только после приёма таких лекарственных средств, как примахин. В отсутствие контактов с лекарственными средствами такие люди производят впечатление здоровых.

8.7.5. О недостаточности фермента обычно судят косвенно по повышению концентрации исходного вещества, которое в норме подвергается превращениям под действием данного фермента (например, фенилаланин при фенилкетонурии). Прямое определение активности таких ферментов проводят только в специализированных центрах, но по возможности диагноз следует подтверждать этим методом. Пренатальная (дородовая) диагностика некоторых врождённых нарушений метаболизма возможна путём иследования клеток амниотической жидкости, полученных на ранних стадиях беременности и культивируемых in vitro.

Некоторые врождённые нарушения метаболизма поддаются лечению путём доставки в организм недостающего метаболита или путём ограничения поступления в желудочно-кишечный тракт предшественников нарушенных процессов обмена веществ. Иногда могут быть удалены накапливающиеся продукты (например, железо при гемохроматозе).

Ферменты, катализирующие одну и ту же химическую реакцию, но отличающиеся по первичной структуре белка, называют изофермен-тами, или изоэнзимами. Они катализируют один и тот же тип реакции с принципиально одинаковым механизмом, но отличаются друг от друга кинетическими параметрами, условиями активации, особенностями связи апофермента и кофермента.

Природа появления изоферментов разнообразна, но чаще всего обусловлена различиями в структуре генов, кодирующих эти изоферменты. Следовательно, изоферменты различаются по первичной структуре белковой молекулы и, соответственно, по физико-химическим свойствам. На различиях в физико-химических свойствах основаны методы определения изоферментов.

По своей структуре изоферменты в основном являются олигомерными белками. Причём та или иная ткань преимущественно синтезирует определённые виды протомеров. В результате определённой комбинации этих протомеров формируются ферменты с различной структурой - изомерные формы. Обнаружение определённых изоферментных форм ферментов позволяет использовать их для диагностики заболеваний.

Изоформы лактатдегидрогеназы. Фермент лак-татдегидрогеназа (ЛДГ) катализирует обратимую реакцию окисления лактата (молочной кислоты) до пирувата (пировиноградной кислоты) (см. раздел 7).

Лактатдегидрогеназа - олигомерный белок с молекулярной массой 134 000 Д, состоящий из 4 субъединиц 2 типов: М (от англ, muscle - мышца) и Н (от англ, heart - сердце). Комбинация этих субъединиц лежит в основе формирования 5 изоформ лактатдегидрогеназы (рис. 2-35, А). ЛДГ 1 и ЛДГ 2 наиболее активны в сердечной мышце и почках, ЛДГ4 и ЛДГ5 - в скелетных мышцах и печени. В остальных тканях имеются различные формы этого фермента.

    Изоформы ЛДГ отличаются электрофоретической подвижностью, что позволяет устанавливать тканевую принадлежность изоформ ЛДГ (рис. 2-35, Б).

Изоформы креатинкиназы. Креатинкиназа (КК) катализирует реакцию образования креатинфосфата:

Молекула КК - димер, состоящий из субъединиц двух типов: М (от англ, muscle - мышца) и В (от англ, brain - мозг). Из этих субъединиц образуются 3 изофермента - ВВ, MB, MM. Изофермент ВВ находится преимущественно в головном мозге, ММ - в скелетных мышцах и MB - в сердечной мышце. Изоформы КК имеют разную электрофоретическую подвижность (рис. 2-36).

Активность КК в норме не должна превышать 90 МЕ/л. Определение активности КК в плазме крови имеет диагностическое значение при инфаркте миокарда (происходит повышение уровня МВ-изоформы). Количество изоформы ММ может повышаться при травмах и повреждениях скелетных мышц. Изоформа ВВ не может проникнуть через гематоэнцефалический барьер, поэтому в крови практически не определяется даже при инсультах и диагностического значения не имеет.

Изоферменты - это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию. Виды изоферментов:

    Органные - ферменты гликолиза в печени и мышцах.

    Клеточные - малатдегидрогеназа цитоплазматическая и митохондриальная (ферменты разные, но катализируют одну и ту же реакцию).

    Гибридные - ферменты с четвертичной структурой, образуются в результате нековалентного связывания отдельных субъединиц (лактатдегидрогеназа - 4 субъединицы 2 типов).

    Мутантные - образуются в результате единичной мутации гена.

    Аллоферменты - кодируются разными аллелями одного и того же гена.

10. I. Применение ферментов с лечебной целью в свою очередь подразде­ляется на два вида: 1) применение в целях заместительной терапии и 2) с целью воздействия фермента на очаг заболевания.

С целью заместительной терапии наиболее широко используют пищева­рительные ферменты, когда у пациента обнаруживается их недостаточ­ность. В качестве примера можно привести препараты желудочного сока или чистыйпепсин или ацидин-пепсин, который незаменим при гастритах с секреторной недостаточностью, при диспепсиях у детей. Панкреатин - препарат, представляющий смесь ферментов поджелудочной железы, приме­няют при панкреатитах, в основном хронического характера. Такое же значение имеют известные препараты холензим, панзинорм и др.

Другая область применения заместительной терапии - это лечение заболеваний, связанных с так называемымиэнзимопатиями . Это заболе­вания врожденные или наследственные, при которых нарушен синтез ка­ких-либо ферментов. Эти заболевания обычно чрезвычайно тяжелые, дети с наследственным отсутствием какого-либо фермента живут недолго, страдают тяжелыми умственными и расстройствами, отсталостью физичес­кого и умственного развития. Заместительная терапия иногда может по­мочь преодолеть эти нарушения.

Целый ряд ферментных препаратов используют в хирургической прак­тике для очистки раневой поверхности от гноя, микробов, излишков грануляционной ткани; в клинике внутренних болезней их применяют:с целью разжижения вязких секретов, экссудатов, сгустков крови, напри­мер, при тяжелых воспалительных заболеваниях легких и бронхов. это в основном ферменты - гидролазы, способные расщеплять природные биопо­лимеры - белки, НК, полисахариды. В связи с их противовоспалительным действием их применяют также при тромбофлебитах, воспалительно-дист­рофических формах пар одонтоза , остеомиелите, гайморите, отитах и др. воспалительных заболеваниях.

Среди них такие ферменты, как трипсин, химотрипсин, РНК-за, ДНК -аза, фибринолизин. Фибиринолизин также используют для удаления внутрисосудистых тромбов. РНК-азу и ДНК-азу с успехом применяют для лечения некоторых вирусных инфекций, например для уничтожения вируса герпеса.

Такие ферменты, как гиалуронидаза, коллагеназа, лидаза, исполь­зуются для борьбы с излишними рубцовыми образованиями.

Аспарагиназа - фермент, образуемый некоторыми штаммами кишечной палочки. Оказывает лечебный эффект при некоторых формах опухолей. Лечебный эффект связан со свойством фермента нарушать обмен амино­кислоты аспарагина, необходимой опухолевым клеткам для роста.

Применение ферментных препаратов с лечебной целью представляет пока еще очень молодое направление медицинской науки. Ограничением здесь является трудоемкость технологий и дороговизна получения чис­тых ферментных препаратов в кристаллическом виде, пригодном для хра­нения и применения у человека. Кроме того, при использовании фер­ментных препаратов приходится учитывать также и другие обстоятельст­ва:

1) Ферменты - это белки, а следовательно в некоторых случаях мо­гут вызвать нежелательную аллергическую реакцию.

2) Быстрым разложением введенных ферментов (белковый препарат, поэтому немедленно захватывается клетками "мусорщиками" - макрофага­ми, фибробластами и др. Отсюда, требуются большие концентрации пре­паратов, чтобы достичь нужного эффекта.

3) Однако при повышении концентрации ферментные препараты могут оказаться токсичными.

И все-таки, в тех случаях, когда удается преодолеть эти пре­пятствия, ферментные препараты оказывают прекрасный лечебный эффект.

Например, эти недостатки частично устраняются при переводе фер­ментов в так называемую "иммобилизованную" форму.

Более подробно о методах иммобилизации ферментов и способах их применения вы прочтете в ваших учебно-методических пособиях.

Изоферменты , или изоэнзимы – это множественные формы фермента , катализирующие одну и ту же реакцию, но отличающиеся друг от друга по физическим и химическим свойствам, в частности по сродству к субстрату, максимальной скорости катализируемой реакции (активности), электрофоретической подвижности или регуляторным свойствам.

В живой природе имеются ферменты, молекулы которых состоят из двух и более субъединиц, обладающих одинаковой или разной первичной, вторичной или третичной структурой. Субъединицы нередко называют протомерами, а объединенную олигомерную молекулу – мультимером (рис. 14.8 а-г).

Считают, что процесс олигомеризации придает субъединицам белков повышенную стабильность и устойчивость по отношению к действию денатурирующих агентов, включая нагревание, влияние протеиназ и др. Однако на нынешнем этапе знаний нельзя ответить однозначно на вопрос о существенности четвертичной структуры для каталитической активности ферментов, поскольку пока отсутствуют методы, позволяющие в «мягких» условиях разрушить лишь четвертичную структуру. Обычно применяемые методы жесткой обработки (экстремальные значения рН, высокие концентрации гуанидинхлорида или мочевины) приводят к разрушению не только четвертичной, но и вторичной, и третичной структур стабильного олигомерного фермента, протомеры которого оказываются денатурированными и, как следствие, лишенными биологической активности.

Рис. 14.8. Модели строения некоторых олигомерных ферментов: а – молекула глутаматдегидрогеназы, состоящая из 6 протомеров (336 кДа); б – молекула РНК-полимеразы; в – половина молекулы каталазы; г – молекулярный комплекс пируватдегидрогеназы

Следует указать на отсутствие ковалентных, главновалентных связей между субъединицами. Связи в основном являются нековалентными, поэтому такие ферменты довольно легко диссоциируют на протомеры. Удивительной особенностью таких ферментов является зависимость активности всего комплекса от способа упаковки отдельных субъединиц. Если генетически различимые субъединицы могут существовать более чем в одной форме, то соответственно и фермент, образованный из двух или нескольких типов субъединиц, сочетающихся в разных количественных пропорциях, может существовать в нескольких сходных, но не одинаковых формах. Подобные разновидности фермента получили название изоферментов (изоэнзимов или, реже, изозимов ).

Одним из наиболее изученных ферментов, множественность форм которого детально изучена методом гель-электрофореза, является лактатдегидрогеназа (ЛДГ), катализирующая обратимое превращение пировиноградной кислоты в молочную. Она может состоять из четырёх субъединиц двух разных Н- и М- типов (сердечный и мышечный). Активный фермент представляет собой одну из следующих комбинаций: НННН, НННМ, ННММ, НМММ, ММММ или Н 4 , Н 3 М, Н 2 М 2 , НМ 3 , М 4 . Они соответствуют изоферментам ЛДГ 1 , ЛДГ 2 , ЛДГ 3 , ЛДГ 4 , и ЛДГ 5 . При этом синтез Н- и М-типов осуществляется различными генами и в разных органах экспрессируется по-разному.

Поскольку Н-протомеры при рН 7,0-9,0 несут более выраженный отрицательный заряд, чем М-протомеры, то изофермент Н 4 при электрофорезе будет мигрировать с наибольшей скоростью в электрическом поле к положительному электроду (аноду). С наименьшей скоростью будет продвигаться к аноду изофермент М 4 , в то время как остальные изоферменты будут занимать промежуточные позиции (рис. 14.9).

Рис. 14.9. Распределение и относительное количество изоферментов ЛДГ в различных органах

Для каждой ткани в норме характерно свое соотношение форм (изоферментный спектр) ЛДГ. Например, в сердечной мышце преобладает тип Н 4 , т. е. ЛДГ 1 , а в скелетных мышцах и печени – тип М 4 , т.е. ЛДГ 5 .

Эти обстоятельства широко используют в клинической практике, поскольку изучение появления изоферментов ЛДГ (и ряда других ферментов) в сыворотке крови может представлять интерес для дифференциальной диагностики органических и функциональных поражений органов и тканей. По изменению содержания изоферментов в сыворотке крови можно судить как о топографии патологического процесса, так и о степени поражения органа или ткани.

В одних случаях субъединицы имеют почти идентичную структуру и каждая содержит каталитически активный участок (например, -галактозидаза, состоящая из четырё субъединиц). В других случаях субъединицы оказываются неидентичными. Примером последних может служить триптофансинтаза, состоящая из двух субъединиц, каждая из которых наделена собственной (но не основной) энзиматической активностью, однако, только будучи объединенными в макромолекулярную структуру, обе субъединицы проявляют триптофансинтазную активность.

Термин «множественные формы фермента » применим к белкам, катализирующим одну и ту же реакцию и встречающимся в природе в организмах одного вида. Термин «изофермент » применим только к тем множественным формам ферментов, которые появляются вследствие генетически обусловленных различий в первичной структуре белка (но не к формам, образовавшимся в результате модификации одной первичной последовательности).

Варбург установил, что альдолазы дрожжей из различных животных тканей различаются по ряду св-в. Пепсин, трипсин, химотрипсин также различались по растворимости, рН, температурному оптимуму.

В конце пятидесятых годов биохимики Виланд и Пфлейдерер, а также другие исследователи выделяли из тканей животных чистые кристаллические препараты фермента лактатдегидрогеназы и подвергали их электрофорезу. В результате электрофореза фермент разделялся, как правило, на 5 фракций , имеющнх различную электрофоретическую подвижность. Все эти фракции обладали лактатдегидрогеназной активностью. Таким образом было установлено, что фермент лактатдегидрогеназа присутствует в тканях в виде нескольких форм. Эти формы в соответствии с их электрофоретпческой подвижностью получили обозначение ЛДГ1, ЛДГ2, ЛДГ3. ЛДГ4, ЛДГ5. (ЛДГ - сокращенное обозначекие лактатдегидрогеназы), причем номером 1 обозначают компонент с наибольшей элсктрофоретической подвижностью.

Исследования иэоферментов лактатдегидрогеназы, выделенных из разных органов животных, показали, что они различаются как по электрофоретическим и хроматографическим свойствам, так и по химическому составу, термостабильности, чувствительности к действию ингибитооров, К m и по другим свойствам. При анализах лактатдегидрогеназы разных видов животных выявлены очень большие межвидовые различия, однако в пределах данного вида распределение изоферментов характеризуется большим постоянством.

Лактатдегидрогеназа была первым ферментом, отдельные компоненты которого были подвергнуты детальзому изучению. Несколько позднее были получены данные о множественных формах и молекулярной неоднородности ряда других фермеатов, а в 1959 г. было предложено называть такие формы изоферментами или изоэнзимами. Комиссия по ферментам Международного биохимического союза официально рекомендовала этот термин для обозначевия мвожествеинь форм ферментов, того же биологического вида.

Итак , изоферменты - это группа ферментов из одного и того же источника, обладающих одним типом субстратной специфичности, катализирующих одну и ту же химическую реакцию, но различающихся по ряду физико-химических свойств .

Наличие множественных форм ферментов, или изоферментов, установлено более чем для 100 ферментов , выделеаных из различных видов животных, растений и микроорганизмов. Изоферменты не всегда состоят из двух или нескольких субъединиц. У ряда ферментов отдельные изофермсаты представляют собой разные по химическому строению белки, обладающие одной и той же каталитической активностью, но состоящие только из одной субъединицы.

Основным критерием для номенклатуры изоферментов в настоящее время принята их электрофоретическая подвижвость. Это объясняется, тем, что по сравнению с другими способами характеристики изферментов электрофорез дает наиболее высокую разрешающую способность.

К настоящему времени в результате изучения растительных изоферментов установлено, что многие ферменты присутствуют в растениях в виде множественных форм. Познакомимся с некоторыми из этих ферментов.

М а л а т д е г и д р о г е н а з а (1.1.1.37) имеет довольно сложвый изофермецтный состав. В семенах хлопчатника и листьях шпината обнаружено по 4 изофермента малатдегидрогеназы, различающихся по электрофоретической подвижности, причем молекулярная масса каждого из четырех изофермевтов шпината равнялась примерно 60 тыс. Разные растения содержат неодинаковое число изоферментов малатдегидрогеназы. Например, в семенах различных сорта к пшеницы обнаружено 7-10 изоферментов, в корнях кукурузы - 4-5, а в различных органах горе (корень, семядоли, подсемядольное и надсемядольное колено) обнаруживали 9-12 изофермевтов малатдегидрогеназы, причем число изоферментов изменялось в зависимости от фазы развития растений.

Отмечалась, что молекулярные массы изоферментоэ малатдегидрогеназы иногда существенно различались. Например, в листьях хлопчатника содержится 7 изоферментов малатдегидрогеназы, из которых 4 изофермеета являются изоформами, имеющими различный электрический заряд, но одинаковую молекулярную массу, равную примерно 60 тыс. Пятый изофермент имел молекулярную массу около 500 тыс. и был олигомером по крайней мере одной из изо форм малатдегидрогеназы с молекулярной массой 60 тыс. Так как в этих исследованиях молекулярные массы определяли приближенно, то можао полагать, что этот изофермент состоит из 8 субъединиц изофермента с молекулярной массой 60 тыс.

Устойчивость и восприимчивость растений к болезням часто связана с регуляцией синтеза изоферментов. В качестве ответной реакции на внедрение инфекции у растениий усилива интенсивность обмена вв., прежде всего окислительно-восставовительньных. Поэтому активность ОВ ферментов и число их изоферментов при поражении растений увеличиваются.

Повышевие активности и увеличение числа изоферментов пероксидазы и о-дифенолоксидазы наблюдаются при различных заболеваниях кукурузы фасоли, табака, клевера, картофелям льна, овса и других растении. На рисунке 22 схематически показано изменение числа изоферментов пероксидазы и их активности при поражении томатов фитофторой. Если в листьях здоровых растений содержалось четыре изофермента пероксидазы, то в пораженных листьях их число возрастало до девяти, причем активность всех изо ферментов значительно повышалась.

При изучении изменений в изоферментном составе пероксидазы п полифенолоксидазы митохондрий при вирусном патогенезе устойчивого и неустойчивого к вирусу табачной мозаики видов табака установлено, что вирусная инфекция вызывает качественно различные изменения изо ферментного состава разных по устойчивости видов табака. У устойчивого вида активность ряда изоферментов повышается в большей степени, чем у восприимчивого. Таким образом, в зависимости от потенциальной способности растения к биосинтезу зоферментов изменяется восприимчивость растения к инфекционным заболевакиям.

Глутаматдегидрогеназы

Эстеразы

Сахараза

Биологическая роль изоферментов в растениях.

ИФ свидетельствуют о большой лабильности ферментативного аппарата растений, дает возможность осуществлять необходимые процессы обмена вв. в клетке при изменении условий внешней среды, обеспечивает специфику обмена вв. для данного органа или ткани растений. Способствует приспособляемости растений к изменяющимся условиям вн. среды.

Одновременное присутствие в клетках множественных форм одного и того же фермента, наряду с другими механизмами регуляции, способствует согласованности процессов обмена вв. в клетке и быстрой адаптации растений к изменяющимся условиям среды.

В самом деле мы отмечали, что отдельные изоерменты различаются по температурным оптимумам, оптимумам рН, отношению к ингибиторам и другим свойствам. Отсюда следует, что если, например, резко изменяются температурные условия, которые становятся неблагоприятными для проявления каталитической активности некоторых изоферментов, то их активность подавляется. Однако данный фермеатативный процесс в растениях не прекращается полностью, так как начинают проявлять каталитическую активность другие изоферменты того же фермента, для которых данная температура является благоприятной. Если в силу каких-либо причин изменяется рН реакционной среды, то также ослабляется активность некоторых изоферментов, но вместо них начинают проявлять каталитическую активность изоферменты, имеющие иной оптимум рН. Высокие концентр ации солей подавляют активность многих ферментов, что является одной из причин ухудшения роста растений на засоленных почвах. Однако даже при высоких концентрациях солей в клетках ферментативные процессы не прекращаются полностью, так как отдельные изоферменты неодинаково относятся к повышению концентрации солей: активность одних изоферментов снижается, других повышается..

Устойчивость и восприимчивость к болезням часто основана на регуляции синтеза ИФ.

Биосинтез изоферментов определяется генетическими факторами и каждый вид растений характеризуется специфическим для данного вида набором изоферментов, т.е. проявляется видовая специфичность по изоферментному составу.

Разные органы одного растения различаются по ИФ.Изучение свойств изоферментов лактатдегидрогеназы, выделенных из различных тканей животных показало, что все изофермевты имеют приблизительно одинаковую молекулярную массу (около 140 тыс) вых условиях, например под действием обработки 42М мочевиной каждый из изоферментов диссоциирует на 4 субъедивицы с молекулярной массой около 35 тыс. Таким образом, каждый из пяти изоферментов лактатдегттдрогеназы представляет собой тетрамер. Установлено что все изоферменты лактатдегирогеназы представляют собой возможные комбинации всего лишь субъединиц двух типов, условно обозначаемых буквами А и В. Разные сочетания этих типов субъединиц образуют все пять изофермеатов лактатдегидрогеназы (рис. 18). Это показывает, что изоферменты лактатдегидрогеназы имеют строго упорядоченную структуру, причем отдельные субъединицы в молекуле этого белка-фермента соединевы водородными связями, которые могут быть разорваны под действием концентрированного раствора мочевивы.

Возникает вопрос, чем отличаются друг от друга отдельные субъединицы лактатдегидрогеаазы и с чем связава различная электрофоретическая подвижность отдельных из изоферментов? На этот вопрос сейчас получены довольно определенные ответы. Оказалось, что субъединицы А и В т- ц аминокислот. Субъединица В содержит большее количество кислых мелочных аминокислот по сравнению с субъединицей А. В связи с этим все изоферменты лактатдегидрогеназы (ЛДГ1 - ЛДГ2) различаются по количеству этих аминокислот, молекулы их имеют разную величину электрического заряда и разную электрофоретическую подвижность. Изоферменты лактатдегидрогеаазы различаются и по ряду других свойств, в частности константам Михаэлиса Км, отношению к ряду ингибиторов, термостабильности.