როგორ ამოხსნათ ლოგარითმული უტოლობა წილადებით. რთული ლოგარითმული უტოლობა

ლოგარითმული უტოლობების მთელ მრავალფეროვნებას შორის ცალკე შესწავლილია ცვლადი ფუძის მქონე უტოლობა. ისინი წყდება სპეციალური ფორმულის გამოყენებით, რომელსაც რატომღაც იშვიათად ასწავლიან სკოლაში:

log k (x) f (x) ∨ log k (x) g (x) ⇒ (f (x) − g (x)) (k (x) − 1) ∨ 0

„∨“ ჩამრთველის ნაცვლად, შეგიძლიათ დააყენოთ ნებისმიერი უთანასწორობის ნიშანი: მეტ-ნაკლებად. მთავარი ის არის, რომ ორივე უტოლობაში ნიშნები ერთნაირია.

ამ გზით ჩვენ გავთავისუფლდებით ლოგარითმებისგან და პრობლემას რაციონალურ უთანასწორობამდე ვამცირებთ. ამ უკანასკნელის ამოხსნა ბევრად უფრო ადვილია, მაგრამ ლოგარითმების გაუქმებისას შეიძლება დამატებითი ფესვები გამოჩნდეს. მათი გათიშვის მიზნით, საკმარისია იპოვოთ მისაღები მნიშვნელობების დიაპაზონი. თუ დაგავიწყდათ ლოგარითმის ODZ, გირჩევთ გაიმეოროთ იგი - იხილეთ „რა არის ლოგარითმი“.

ყველაფერი, რაც დაკავშირებულია მისაღები მნიშვნელობების დიაპაზონთან, ცალკე უნდა ჩაიწეროს და გადაწყდეს:

f(x) > 0; g(x) > 0; k(x) > 0; k(x) ≠ 1.

ეს ოთხი უტოლობა წარმოადგენს სისტემას და უნდა დაკმაყოფილდეს ერთდროულად. როდესაც მისაღები მნიშვნელობების დიაპაზონი იქნა ნაპოვნი, რჩება მხოლოდ მისი გადაკვეთა რაციონალური უთანასწორობის ამოხსნით - და პასუხი მზად არის.

დავალება. ამოხსენით უტოლობა:

პირველ რიგში, მოდით დავწეროთ ლოგარითმის ODZ:

პირველი ორი უტოლობა სრულდება ავტომატურად, მაგრამ ბოლო უნდა ამოიწეროს. ვინაიდან რიცხვის კვადრატი არის ნული, თუ და მხოლოდ იმ შემთხვევაში, თუ თავად რიცხვი არის ნული, გვაქვს:

x 2 + 1 ≠ 1;
x 2 ≠ 0;
x ≠ 0.

გამოდის, რომ ლოგარითმის ODZ არის ყველა რიცხვი ნულის გარდა: x ∈ (−∞ 0)∪(0; +∞). ახლა ჩვენ ვხსნით მთავარ უტოლობას:

ჩვენ ვაკეთებთ გადასვლას ლოგარითმული უტოლობიდან რაციონალურზე. თავდაპირველ უტოლობას აქვს "ნაკლები" ნიშანი, რაც ნიშნავს, რომ მიღებულ უტოლობას ასევე უნდა ჰქონდეს "ნაკლები" ნიშანი. ჩვენ გვაქვს:

(10 − (x 2 + 1)) · (x 2 + 1 − 1)< 0;
(9 − x 2) x 2< 0;
(3 − x) · (3 + x) · x 2< 0.

ამ გამოხატვის ნულებია: x = 3; x = −3; x = 0. უფრო მეტიც, x = 0 არის მეორე სიმრავლის ფესვი, რაც ნიშნავს, რომ მასში გავლისას ფუნქციის ნიშანი არ იცვლება. ჩვენ გვაქვს:

ვიღებთ x ∈ (−∞ −3)∪(3; +∞). ეს ნაკრები მთლიანად შეიცავს ლოგარითმის ODZ-ს, რაც ნიშნავს, რომ ეს არის პასუხი.

ლოგარითმული უტოლობების გარდაქმნა

ხშირად თავდაპირველი უთანასწორობა განსხვავდება ზემოთ მოყვანილისგან. ამის მარტივად გამოსწორება შესაძლებელია ლოგარითმებთან მუშაობის სტანდარტული წესების გამოყენებით - იხილეთ „ლოგარითმების ძირითადი თვისებები“. კერძოდ:

  1. ნებისმიერი რიცხვი შეიძლება წარმოდგენილი იყოს ლოგარითმის სახით მოცემული ფუძით;
  2. ერთნაირი ფუძის მქონე ლოგარითმების ჯამი და სხვაობა შეიძლება შეიცვალოს ერთი ლოგარითმით.

ცალკე მინდა შეგახსენოთ მისაღები მნიშვნელობების დიაპაზონი. ვინაიდან თავდაპირველ უტოლობაში შეიძლება იყოს რამდენიმე ლოგარითმი, საჭიროა თითოეული მათგანის VA-ს პოვნა. ამრიგად, ლოგარითმული უტოლობების ამოხსნის ზოგადი სქემა შემდეგია:

  1. იპოვეთ უტოლობაში შემავალი თითოეული ლოგარითმის VA;
  2. უტოლობის შემცირება სტანდარტულამდე ლოგარითმების შეკრებისა და გამოკლების ფორმულების გამოყენებით;
  3. ამოხსენით მიღებული უტოლობა ზემოთ მოცემული სქემის გამოყენებით.

დავალება. ამოხსენით უტოლობა:

ვიპოვოთ პირველი ლოგარითმის განმარტების დომენი (DO):

ვხსნით ინტერვალის მეთოდით. მრიცხველის ნულების პოვნა:

3x − 2 = 0;
x = 2/3.

შემდეგ - მნიშვნელის ნულები:

x − 1 = 0;
x = 1.

ჩვენ აღვნიშნავთ ნულებს და ნიშნებს კოორდინატთა ისრზე:

ვიღებთ x ∈ (−∞ 2/3)∪(1; +∞). მეორე ლოგარითმს ექნება იგივე VA. თუ ჩემი არ გჯერათ, შეგიძლიათ შეამოწმოთ. ახლა ჩვენ გარდაქმნით მეორე ლოგარითმს ისე, რომ საფუძველი იყოს ორი:

როგორც ხედავთ, სამეული ძირში და ლოგარითმის წინ შემცირდა. მივიღეთ ორი ლოგარითმი ერთი და იგივე ფუძით. მოდით დავამატოთ ისინი:

ჟურნალი 2 (x − 1) 2< 2;
ჟურნალი 2 (x − 1) 2< log 2 2 2 .

მივიღეთ სტანდარტული ლოგარითმული უტოლობა. ლოგარითმებს ფორმულის გამოყენებით ვაშორებთ. ვინაიდან თავდაპირველი უტოლობა შეიცავს "ნაკლები" ნიშანს, შედეგად მიღებული რაციონალური გამოხატულება ასევე უნდა იყოს ნულზე ნაკლები. ჩვენ გვაქვს:

(f (x) - g (x)) (k (x) - 1)< 0;
((x − 1) 2 − 2 2) (2 − 1)< 0;
x 2 − 2x + 1 − 4< 0;
x 2 − 2x − 3< 0;
(x − 3)(x + 1)< 0;
x ∈ (−1; 3).

მივიღეთ ორი კომპლექტი:

  1. ODZ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. კანდიდატის პასუხი: x ∈ (−1; 3).

რჩება ამ კომპლექტების გადაკვეთა - ვიღებთ ნამდვილ პასუხს:

ჩვენ გვაინტერესებს კომპლექტების კვეთა, ამიტომ ვირჩევთ ინტერვალებს, რომლებიც დაჩრდილულია ორივე ისრზე. ვიღებთ x ∈ (−1; 2/3)∪(1; 3) - ყველა წერტილი პუნქციაა.

თქვენი კონფიდენციალურობის შენარჩუნება ჩვენთვის მნიშვნელოვანია. ამ მიზეზით, ჩვენ შევიმუშავეთ კონფიდენციალურობის პოლიტიკა, რომელიც აღწერს, თუ როგორ ვიყენებთ და ვინახავთ თქვენს ინფორმაციას. გთხოვთ, გადახედოთ ჩვენს კონფიდენციალურობის პრაქტიკას და შეგვატყობინოთ, თუ თქვენ გაქვთ რაიმე შეკითხვები.

პირადი ინფორმაციის შეგროვება და გამოყენება

პერსონალური ინფორმაცია ეხება მონაცემებს, რომლებიც შეიძლება გამოყენებულ იქნას კონკრეტული პირის იდენტიფიცირებისთვის ან დასაკავშირებლად.

თქვენ შეიძლება მოგეთხოვოთ თქვენი პირადი ინფორმაციის მიწოდება ნებისმიერ დროს, როცა დაგვიკავშირდებით.

ქვემოთ მოცემულია პერსონალური ინფორმაციის ტიპების მაგალითები, რომლებიც შეიძლება შევაგროვოთ და როგორ გამოვიყენოთ ასეთი ინფორმაცია.

რა პერსონალურ ინფორმაციას ვაგროვებთ:

  • საიტზე განაცხადის გაგზავნისას, ჩვენ შეიძლება შევაგროვოთ სხვადასხვა ინფორმაცია, მათ შორის თქვენი სახელი, ტელეფონის ნომერი, ელექტრონული ფოსტის მისამართი და ა.შ.

როგორ ვიყენებთ თქვენს პირად ინფორმაციას:

  • ჩვენ მიერ შეგროვებული პერსონალური ინფორმაცია საშუალებას გვაძლევს დაგიკავშირდეთ უნიკალური შეთავაზებებით, აქციებით და სხვა ღონისძიებებით და მომავალი ღონისძიებებით.
  • დროდადრო, ჩვენ შეიძლება გამოვიყენოთ თქვენი პირადი ინფორმაცია მნიშვნელოვანი შეტყობინებებისა და კომუნიკაციების გასაგზავნად.
  • ჩვენ ასევე შეიძლება გამოვიყენოთ პერსონალური ინფორმაცია შიდა მიზნებისთვის, როგორიცაა აუდიტის ჩატარება, მონაცემთა ანალიზი და სხვადასხვა კვლევა, რათა გავაუმჯობესოთ ჩვენს მიერ მოწოდებული სერვისები და მოგაწოდოთ რეკომენდაციები ჩვენს სერვისებთან დაკავშირებით.
  • თუ თქვენ მონაწილეობთ საპრიზო გათამაშებაში, კონკურსში ან მსგავს აქციაში, ჩვენ შეიძლება გამოვიყენოთ თქვენ მიერ მოწოდებული ინფორმაცია ასეთი პროგრამების ადმინისტრირებისთვის.

ინფორმაციის გამჟღავნება მესამე პირებისთვის

ჩვენ არ ვამხელთ თქვენგან მიღებულ ინფორმაციას მესამე პირებს.

გამონაკლისები:

  • აუცილებლობის შემთხვევაში - კანონის, სასამართლო პროცედურების შესაბამისად, სასამართლო პროცესებში და/ან საჯარო მოთხოვნის ან რუსეთის ფედერაციის სამთავრობო ორგანოების მოთხოვნის საფუძველზე - თქვენი პირადი ინფორმაციის გამჟღავნება. ჩვენ ასევე შეიძლება გავამჟღავნოთ ინფორმაცია თქვენს შესახებ, თუ გადავწყვეტთ, რომ ასეთი გამჟღავნება აუცილებელია ან მიზანშეწონილია უსაფრთხოების, კანონის აღსრულების ან სხვა საზოგადოებრივი მნიშვნელობის მიზნებისთვის.
  • რეორგანიზაციის, შერწყმის ან გაყიდვის შემთხვევაში, ჩვენ შეიძლება გადავიტანოთ ჩვენს მიერ შეგროვებული პერსონალური ინფორმაცია შესაბამის მემკვიდრე მესამე მხარეს.

პირადი ინფორმაციის დაცვა

ჩვენ ვიღებთ სიფრთხილის ზომებს - მათ შორის ადმინისტრაციულ, ტექნიკურ და ფიზიკურ - თქვენი პერსონალური ინფორმაციის დაკარგვის, ქურდობისა და ბოროტად გამოყენებისგან დასაცავად, ასევე არაავტორიზებული წვდომისგან, გამჟღავნების, ცვლილებისა და განადგურებისგან.

თქვენი კონფიდენციალურობის პატივისცემა კომპანიის დონეზე

თქვენი პერსონალური ინფორმაციის უსაფრთხოების უზრუნველსაყოფად, ჩვენ ვუწოდებთ კონფიდენციალურობისა და უსაფრთხოების სტანდარტებს ჩვენს თანამშრომლებს და მკაცრად ვიცავთ კონფიდენციალურობის პრაქტიკას.

უტოლობას ლოგარითმული ეწოდება, თუ ის შეიცავს ლოგარითმულ ფუნქციას.

ლოგარითმული უტოლობების ამოხსნის მეთოდები არაფრით განსხვავდება, გარდა ორი რამისა.

პირველ რიგში, ლოგარითმული უტოლობიდან სუბლოგარითმული ფუნქციების უტოლობაზე გადასვლისას, უნდა მიჰყევით შედეგად მიღებული უთანასწორობის ნიშანს. ის ემორჩილება შემდეგ წესს.

თუ ლოგარითმული ფუნქციის საფუძველი $1$-ზე მეტია, მაშინ ლოგარითმული უტოლობიდან სუბლოგარითმული ფუნქციების უტოლობაზე გადასვლისას უტოლობის ნიშანი შენარჩუნებულია, მაგრამ თუ $1$-ზე ნაკლებია, მაშინ იცვლება საპირისპიროდ. .

მეორეც, ნებისმიერი უტოლობის ამოხსნა არის ინტერვალი და, შესაბამისად, სუბლოგარითმული ფუნქციების უტოლობის ამოხსნის ბოლოს აუცილებელია ორი უტოლობის სისტემის შექმნა: ამ სისტემის პირველი უტოლობა იქნება სუბლოგიარითმული ფუნქციების უტოლობა. ხოლო მეორე იქნება ლოგარითმული უტოლობაში შემავალი ლოგარითმული ფუნქციების განსაზღვრის დომენის ინტერვალი.

ივარჯიშე.

მოვაგვაროთ უტოლობა:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \x+3>0.$

$x \in (-3;+\infty)$

ლოგარითმის საფუძველია $2>1$, ამიტომ ნიშანი არ იცვლება. ლოგარითმის განმარტების გამოყენებით მივიღებთ:

$x+3 \geq 2^(3),$

$x \in )