Преломление света на границе раздела двух сред. Законы преломления света. Преломление света

Явление преломления света.

Если световой пучок падает на поверхность, разделяющую две прозрачные среды разной оптической плотности, например воздух и воду, то часть света отражается от этой поверхности, а другая часть - проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе этих сред. Это явление называется преломле­нием света.

Рассмотрим преломление света подробнее. На рисунке п оказаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр CD, восстановленный из точки падения О к поверхности, разделяющей две разные среды. Угол АОС - угол падения, угол DOB - угол преломле­ния. Угол преломления DOB меньше угла падения АОС.

Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD. Вода - среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачней средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать: если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения.

Опыты показывают, что при одном и том же угле падения угол преломления тем меньше, чем плотнее в оптическом отношении среда, в которую проникает луч.
Если на пути преломлённого луча расположить перпендикулярно лучу зеркало, то свет отразится от зеркала и выйдет из воды в воздух по направлению падающего луча. Следовательно, лучи падающий и преломлённый обратимы так же, как обратимы падающий и отражённый лучи.
Если свет идёт из среды более оптически плотной в среду менее плотную, то угол преломления луча больше угла падения.

Давайте проведем дома маленький эксперимент. м дома маленькийэксперимент. ам надо опустить в стакан с водой карандаш, и он покажется поломанным. Э то можно объяснить только тем, что лучи света, идущие от карандаша, имеют в воде другое направление, чем в воздухе, т. е. происходит преломление света на границе воздуха с водой. Когда свет переходит из одной среды в другую, на границе раздела происходит отражение части падающего на неё света. Остальная часть света проникает в новую среду. Если свет падает под углом к поверхности раздела, отличным от прямого, от на границе световой луч изменяет своё направление.
Это и называется явлением преломлением света. Явление преломления света наблюдается на границе двух прозрачных сред и объясняется разной скоростью распространения света в различных средах. В вакууме скорость света составляет приблизительно 300000 км/с, во всех других

с редах она меньше.

На рисунке ниже показан луч, переходящий из воздуха в воду. Угол называется углом падения луча, а - углом преломления. Обратите внимание на то, что в воде луч приближается к нормали. Так происходит всякий раз, когда луч попадает в среду, где скорость света меньше. Если же свет распространяется из одной среды в другую, где скорость света больше, то он отклоняется от нормали.

Преломлением обусловлен целый ряд широко известных оптических иллюзий. Например, наблюдателю на берегу, кажется, что у человека, зашедшего в воду по пояс, ноги стали короче.

Законы преломления света.

Из всего сказанного заключаем:
1 . На границе раздела двух сред различной оптической плотности луч света при переходе из одной среды в другую меняет своё направление.
2. При переходе луча света в среду с большей оптической плотностью угол преломления меньше угла падения; при переходе луча света из оптически более плотной среды в среду менее плотную угол преломления больше угла паде ния.
Преломление света сопровождается отражением, причём с увеличением угла падения яркость отражённого пучка возрастает, а преломлённого ослабевает. Это можно увидеть проводя опыт, изображённом на рисунке. С ледовательно, отражённый пучок уносит с собой тем больше световой энергии, чем больше угол падения.

Пусть MN -граница раздела двух про зрачных сред, например, воздуха и воды, АО -падающий луч, ОВ - преломленный луч, -угол падения, -угол преломления, -скорость распространения света в первой среде, - скорость распространения света во второй среде.

Первый закон преломления звучит так: отношение синуса угла падения к синусу угла преломления является постоянной величиной для данных двух сред:

, где - относительный показатель преломления (показатель преломления второй среды относительно первой).

Второй закон преломления света очень напоминает второй закон отражения света:

падающий луч, луч преломленный и перпендикуляр, проведенный в точку падения луча, лежит в одной плоскости.

Абсолютный показатель преломления.

Скорость распространения света в воздухе почти не отличается от скорости света в вакууме: с м/с.

Если свет попадает из вакуума в какую-нибудь среду, то

где n - абсолютный показатель преломления данной среды. Относительный показатель преломления двух сред связанный с абсолютными показателями преломления этих сред, где и - соответственно абсолютные показатели преломления первой и второй сред.

Абсолютные показатели преломления света:

Вещество

Алмаз 2,42. Кварц 1,54. Воздух (при нормальных условиях) 1,00029. Этиловый спирт 1,36. Вода 1,33. Лёд 1,31. Скипидар 1,47. Плавленый кварц 1,46. Крон 1,52. Лёгкий флинт 1,58. Хлорид натрия (соль) 1,53.

(Как мы увидим в дальнейшем, показатель преломления n несколько меняется в зависимости от длины волны света – постоянное значение он сохраняет только в вакууме. Поэтому приведённые в таблице данные соответствуют желтому свету с длинной волны .)

Напимер, так как для алмаза , свет распространяется в алмазе со скоростью

Оптическая плотность среды.

Если абсолютный показатель преломления первой среды меньше абсолютного показателя преломления второй среды, то первая среда имеет меньшую оптическую плотность, нежели вторая и > . Оптическую плотность среды не следует путать с плотностью вещества.

Прохождение света сквозь плоско-параллельную пластинку и призму .

Большое практическое значение имеет прохождение света через прозрачные тела различной формы. Рассмотрим наиболее простые случаи.
Направим луч света сквозь толстую плоскопараллельную пластинку (пластинку, ограниченную параллельными гранями). Проходя через пластинку, луч света преломляется дважды: один раз при входе в пластинку, второй раз при выходе из пластинки в воздух.

Прошедший через пластинку луч света остаётся параллельным своему первоначальному направлению и только немного смещается. Это смещение тем больше, чем толще пластинка и чем больше угол падения. Величина смещения зависит и от того, из какого вещества изготовлена пластинка.
Примером плоскопараллельной пластинки служит оконное стекло. Но рассматривая предметы через стекло, мы не замечаем изменений в их расположении и форме потому, что стекло тонкое; лучи света, проходя оконное стекло, смещаются незначительно.
Если рассматривать какой-либо предмет через призму, то предмет кажетсясмещённым. Идущий от предмета луч света падает на призму в точке А, преломляется и идёт внутри призмы по направленшо АВ Дойдя до второй грани призмы. луч света ещё раз преломляется, отклоняясь к основанию призмы. Поэтому кажется, что луч идет из точки. располо женной на продолжении луча ВС, то есть предмет кажется смещённым к вершине угла, образованного преломляющими гранями призмы.

Полное отражение света.

Красивое зрелище представляет собой фонтан, у которого выбрасываемые струи освещаются изнутри. (Это можно изобразить в обычных условиях, проделав следующий опыт№1). Обьясним это явление чуть ниже.

При переходе света из оптически более плотной среды в оптически менее плотую наблюдается явление полного отражения света. Угол преломления в этом случае больший по сравнению с углом падения (рис. 141). При увеличении угла падения световых лучей от источника S на поверхность раздела двух сред МN наступит такой момент, когда преломленный луч пойдет вдоль границы раздела двух сред, то есть = 90°.

Угол падения , которому отвечает угол преломления = 90°, называют граничным углом полного отражения.

Если превысить этот угол, то лучи не выйдут из первой среды вообще, будет наблюдаться только явление отражения света от границы раздела двух сред.

Из первого закона преломления:

Так как , то .

Если вторая среда - воздух (вакуум), то где n - абсолютный показатель преломления среды, из которой идут лучи.

Объяснение явления наблюдаемого вами в опыте довольно простое. Луч света проходит вдоль струи воды и попадает на изогнутую поверхность под углом, большим предельного, испытывает полное внутреннее отражение, а затем опять попадает на противоположную сторону струи под углом опять больше предельного. Так луч проходит вдоль струи изгибаясь вместе с ней.

Но если бы свет полностью отражался внутри струи, то она не была бы видна извне. Часть света рассеивается водой, пузырьками воздуха и различными примесями, имеющимися в ней, а также вследствие неровностей поверхности струи, поэтому она видна снаружи.


Явление преломления света было известно еще Аристотелю. Птолемей сделал попытку установить закон количественно, измеряя углы падения и преломления света. Однако ученый сделал неверный вывод о том, что угол преломления пропорционален углу падения. После него было сделано еще несколько попыток установления закона,успешнойстала попытка голландского ученого Снеллиуса в 17 веке.

Закон преломления света является одним из четырех основных законов оптики, которые были эмпирически открыты еще до установления природы света. Это законы:

  1. прямолинейного распространения света;
  2. независимости пучков света;
  3. отражения света от зеркальной поверхности;
  4. преломление света на границе двух прозрачных веществ.

Все данные законы ограничены в применении и являются приближенными. Выяснение границ и условий применимости этих законов имеет большое значение в установлении природы света.

Формулировка закона

Падающий луч света, преломленный луч и перпендикуляр к границе раздела двух прозрачных сред лежат в одной плоскости (рис.1). При этом угол падения () и угол преломления () связаны соотношением:

где — постоянная величина, не зависящая от углов , которая называется показателем преломления. Если быть более точным, то в выражении (1) используют относительный показатель преломления вещества, в котором распространяется преломленный свет, относительно среды, в которой распространялась падающая волна света:

где — абсолютный показатель преломления второй среды, — абсолютный показатель преломления первого вещества; — фазовая скорость распространения света в первой среде; — фазовая скорость распространения света вовтором веществе. В том случае, если title="Rendered by QuickLaTeX.com" height="16" width="60" style="vertical-align: -4px;">, то вторая среда считается оптически более плотной, чем первая.

Учитывая выражение (2) закон преломления иногда записывают как:

Из симметрии выражения (3) следует обратимость лучей света. Если обратить преломленный луч (рис.1), и заставить его падать на границу раздела под углом , то в среде (1) он будет идти в обратном направлении вдоль падающего луча.

В том случае, если световая волна распространяется из вещества с большим показателем преломления в среде с меньшим показателем преломления, то угол преломления будет больше, чем угол падения.

При увеличении угла падения увеличивается и угол преломления. Это происходит до тех пор, пока при некотором угле падения, который называют предельным (), угол преломления не станет равен 900. Если угол падения больше предельного угла (), то весь падающий свет отражается от границы раздела.Для предельного угла падения выражение (1) трансформируется в формулу:

где уравнение (4) удовлетворяет величинам угла при Это означает, что явление полного отражения возможно при попадании света из вещества оптически более плотного в вещество оптически менее плотное.

Условия применимости закона преломления

Закон преломления света называют законом Снеллиуса. Он выполняется для монохроматического света, длина волны которого много больше, чем межмолекулярные расстояния среды, в которой он распространяется.

Закон преломления нарушается, если размер поверхности, которая разделяет две среды, мал и возникает явление дифракции. Кроме этого закон Снеллиуса не выполняется, если проявляются нелинейные явления, которые могут возникать при больших интенсивностях света.

Примеры решения задач

ПРИМЕР 1

Задание Каков показатель преломления жидкости (), если луч света, падая на границу стекло — жидкость испытывает полное отражение? При этом предельный угол полного отражения равен , показатель преломления стекла равен
Решение Основой для решения задачи служит закон Снеллиуса, который запишем в виде:

Выразим из формулы (1.1) искомую величину (), получим:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Между двумя прозрачными пластинками с показателями преломления и находится слой прозрачного вещества с показателем преломления (рис.2). Луч света падает на границу раздела первая пластинка — вещество под углом ( меньше предельного). Переходя из слоя вещества во вторую пластинку, он падает на нее под углом . Покажите, что луч преломляется в такой системе, как будто прослойки между пластинами не существует.

4.1. Основные понятия и законы геометрической оптики

Законы отражения света.
Первый закон отражения:
лучи, падающий и отражённый, лежат в одной плоскости с перпендикуляром к отражающей поверхности, восстановленным в точке падения луча.
Второй закон отражения:
угол падения равен углу отражения (см. рис. 8).
α - угол падения, β - угол отражения.

Законы преломления света. Показатель преломления.
Первый закон преломления:
падающий луч, преломлённый луч и перпендикуляр, восстановленный в точке падения к границе раздела, лежат в одной плоскости (см. рис. 9).


Второй закон преломления:
отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и называемая относительным показателем преломления второй среды относительно первой.

 Относительный показатель преломления показывает, во сколько раз скорость света в первой среде отличается от скорости света во второй среде:

Полное отражение.
Если свет переходит из оптически более плотной среды в оптически менее плотную, то при выполнении условия α > α 0 , где α 0 - предельный угол полного отражения, свет вообще не выйдет во вторую среду. Он полностью отразится от границы раздела и останется в первой среде. При этом закон отражения света даёт следующее соотношение:

4.2. Основные понятия и законы волновой оптики

Интерференцией называется процесс наложения волн от двух или нескольких источников друг на друга, в результате которого происходит перераспределение энергии волн в пространстве. Для перераспределения энергии волн в пространстве необходимо, чтобы источники волн были когерентны. Это означает, что они должны испускать волны одинаковой частоты и сдвиг по фазе между колебаниями этих источников с течением времени не должен изменяться.
 В зависимости от разности хода (∆) в точке наложения лучей наблюдается максимум или минимум интерференции. Если разность хода лучей от синфазных источников ∆ равна целому числу длин волн (m - целое число), то это максимум интерференции:

если нечётному числу полуволн - минимум интерференции:

Дифракцией называют отклонение в распространении волны от прямолинейного направления или проникновение энергии волн в область геометрической тени. Дифракция хорошо наблюдается в тех случаях, когда размеры препятствий и отверстий, через которые проходит волна, соизмеримы с длиной волны.
 Один из оптических приборов, на котором хорошо наблюдать дифракцию света - это дифракционная решётка. Она представляет собой стеклянную пластинку, на которую на равном расстоянии друг от друга алмазом нанесены штрихи. Расстояние между штрихами - постоянная решётки d. Лучи, прошедшие через решётку, дифрагируют под всевозможными углами. Линза собирает лучи, идущие под одинаковым углом дифракции, в одной из точек фокальной плоскости. Идущие под другом углом - в других точках. Накладываясь друг на друга, эти лучи дают максимум или минимум дифракционной картины. Условия наблюдения максимумов в дифракционной решётке имеют вид:

где m - целое число, λ - длина волны (см. рис. 10).

Явление преломления света - это физическое явление, которое происходит каждый раз, когда волна перемещается из одного материала в другой, в котором ее скорость распространения изменяется. Визуально оно проявляется в том, что изменяется направление распространения волны.

Физика: преломление света

Если падающий луч попадает на раздел между двумя средами под углом 90°, то ничего не происходит, он продолжает свое движение в том же направлении под прямым углом к границе раздела. Если угол падения луча отличается от 90°, происходит явление преломления света. Это, например, производит такие странные эффекты, как кажущийся излом объекта, частично погруженного в воду или миражи, наблюдаемые в горячей песчаной пустыне.

История открытия

В первом столетии н. э. древнегреческий географ и астроном Птолемей попытался математически объяснить величину рефракции, но предложенный им закон позже оказался ненадежным. В XVII в. голландский математик Виллеброрд Снелл разработал закон, который определял величину, связанную с отношением падающего и преломленного углов, которая впоследствии была названа показателем рефракции вещества. По сути, чем больше вещество способно преломлять свет, тем больше этот показатель. Карандаш в воде «сломан», потому что лучи, идущие от него, изменяют свой путь на границе раздела воздух-вода прежде, чем достигают глаз. К разочарованию Снелла, ему так и не удалось обнаружить причину этого эффекта.

В 1678 году еще один голландский ученый Христиан Гюйгенс разработал математическую зависимость, объясняющую наблюдения Снеллиуса и предположил, что явление преломления света - это результат разной скорости, с которой луч проходит через две среды. Гюйгенс определил, что отношение углов прохождения света через два материала с разными показателями рефракции должно быть равным отношению его скоростей в каждом материале. Таким образом, он постулировал, что через среды, имеющие больший коэффициент преломления, свет движется медленнее. Иначе говоря, скорость света через материал обратно пропорциональна его показателю преломления. Хотя впоследствии закон был экспериментально подтвержден, для многих исследователей того времени это не было очевидным, т. к. отсутствовали надежные средства света. Ученым казалось, что его скорость не зависит от материала. Лишь через 150 лет после смерти Гюйгенса скорость света была измерена с достаточной точностью, доказывающей его правоту.

Абсолютный показатель рефракции

Абсолютный показатель преломления n прозрачного вещества или материала определяется как относительная скорость, при которой свет проходит через него относительно скорости в вакууме: n=c/v, где с - скорость света в вакууме, а v - в материале.

Очевидно, что преломление света в вакууме, лишенном любого вещества, отсутствует, и в нем абсолютный показатель равен 1. Для других прозрачных материалов это значение больше 1. Для расчета показателей неизвестных материалов может использоваться преломление света в воздухе (1,0003).

Законы Снеллиуса

Введем некоторые определения:

  • падающий луч - луч, который приближается к разделению сред;
  • точка падения - точка разделения, в которую он попадает;
  • преломленный луч покидает разделение сред;
  • нормаль - линия, проведенная перпендикулярно к разделению в точке падения;
  • угол падения - угол между нормалью и падающим лучом;
  • определить света можно как угол между преломленным лучом и нормалью.

Согласно законам рефракции:

  1. Падающий, преломленный луч и нормаль находятся в одной плоскости.
  2. Отношение синусов углов падения и рефракции равно отношению коэффициентов рефракции второй и первой среды: sin i/sin r = n r /n i .

Закон преломления света (Снеллиуса) описывает взаимосвязь между углами двух волн и показателями рефракции двух сред. Когда волна переходит из менее рефракционной среды (например, воздуха) в более преломляющую (например, воду), ее скорость падает. Наоборот, когда свет переходит из воды в воздух, скорость увеличивается. в первой среде по отношению к нормали и угол рефракции во второй будут отличаться пропорционально разнице в показателях преломления между этими двумя веществами. Если волна переходит из среды с низким коэффициентом в среду с более высоким, то она изгибается в направлении к нормали. А если наоборот, то она удаляется.

Относительный показатель рефракции

Показывает, что отношение синусов падающего и преломленного углов равно константе, которая представляет собой отношение в обеих средах.

sin i/sin r = n r /n i =(c/v r)/(c/v i)=v i /v r

Отношение n r /n i называется относительным коэффициентом преломления для данных веществ.

Ряд явлений, которые являются результатом рефракции, часто наблюдаются в повседневной жизни. Эффект «сломанного» карандаша - одно из самых распространенных. Глаза и мозг следуют за лучами обратно в воду, как будто они не преломляются, а приходят от объекта по прямой линии, создавая виртуальный образ, который появляется на меньшей глубине.

Дисперсия

Тщательные измерения показывают, что на преломление света длина волны излучения или его цвет оказывают большое влияние. Другими словами, вещество имеет много которые могут различаться при изменении цвета или длины волны.

Такое изменение имеет место во всех прозрачных средах и носит название дисперсии. Степень дисперсии конкретного материала зависит от того, насколько показатель рефракции изменяется с длиной волны. С ростом длины волны становится менее выраженным явление преломления света. Это подтверждается тем, что фиолетовый рефрагирует больше красного, так как его длина волны короче. Благодаря дисперсии в обычном стекле происходит известное расщепление света на его составляющие.

Разложение света

В конце XVII века сэр Исаак Ньютон провел серию экспериментов, которые привели к его открытию видимого спектра, и показал, что белый свет состоит из упорядоченного массива цветов, начиная от фиолетового через синий, зеленый, желтый, оранжевый и заканчивая красным. Работая в затемненной комнате, Ньютон помещал стеклянную призму в узкий луч, проникавший через отверстие в оконных ставнях. При прохождении через призму происходило преломление света - стекло проецировало его на экран в виде упорядоченного спектра.

Ньютон пришел к выводу о том, что белый свет состоит из смеси разных цветов, а также, что призма «разбрасывает» белый свет, преломляя каждый цвет под другим углом. Ньютон не смог разделить цвета, пропуская их через вторую призму. Но когда он поставил вторую призму очень близко к первой таким образом, что все диспергированные цвета вошли во вторую призму, ученый установил, что цвета рекомбинируют, снова образуя белый свет. Этот открытие убедительно доказало спектральный который может быть легко разделен и соединен.

Явление дисперсии играет ключевую роль в большом числе разнообразных явлений. Радуга возникает в результате преломления света в каплях дождя, производя впечатляющее зрелище спектрального разложения, подобное тому, которое происходит в призме.

Критический угол и полное внутреннее отражение

При прохождении через среду с более высоким показателем рефракции в среду с более низким путь движения волн определяется углом падения относительно разделения двух материалов. Если угол падения превышает определенное значение (зависящее от показателя рефракции двух материалов), он достигает точки, когда свет не преломляется в среду с более низким показателем.

Критический (или предельный) угол определяется как угол падения, результирующий в угол рефракции, равный 90°. Другими словами, пока угол падения меньше критического, рефракция происходит, а когда он равен ему, то преломленный луч проходит вдоль места разделения двух материалов. Если угол падения превышает критический, то свет отражается обратно. Явление это носит название полного внутреннего отражения. Примеры его использования - алмазы и Огранка алмаза способствует полному внутреннему отражению. Большинство лучей, входящих сквозь верхнюю часть бриллианта, будет отражаться, пока они не достигнут верхней поверхности. Именно это дает бриллиантам их яркий блеск. Оптическое волокно представляет собой стеклянные «волосы», настолько тонкие, что когда свет входит в один конец, он не может выйти наружу. И только когда луч достигнет другого конца, он сможет покинуть волокно.

Понимать и управлять

Оптические приборы, начиная от микроскопов и телескопов до фотокамер, видеопроекторов, и даже человеческий глаз полагаются на тот факт, что свет может быть сфокусирован, преломлен и отражен.

Рефракция производит широкий спектр явлений, в том числе миражи, радуги, оптические иллюзии. Из-за преломления толстостенная кружка пива кажется более полной, а солнце садится на несколько минут позже, чем на самом деле. Миллионы людей используют силу рефракции, чтобы исправить дефекты зрения с помощью очков и контактных линз. Благодаря пониманию этих свойств света и управлению ими, мы можем увидеть детали, невидимые невооруженным глазом, независимо от того, находятся ли они на предметном стекле микроскопа или в далекой галактике.

На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление свет, переходя в другую среду, меняет направление своего распространения.

Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.

4.3.1 Закон преломления (частный случай)

Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.

Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис.4.11 .

Среда O

Рис. 4.11. Преломление луча на границе ¾воздух–среда¿

В точке падения O проведён перпендикуляр (или, как ещё говорят, нормаль) CD к поверхности среды. Луч AO, как и раньше, называется падающим лучом, а угол между падающим лучом и нормалью углом падения. Луч OB это преломлённый луч; угол между преломлённым лучом и нормалью к поверхности называется углом преломления.

Всякая прозрачная среда характеризуется величиной n, которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла n = 1;6, а для воды n = 1;33. Вообще, у любой среды n > 1; показатель преломления равен единице только в вакууме. У воздуха n = 1;0003, поэтому для воздуха с достаточной точностью можно полагать в задачах n = 1 (в оптике воздух не сильно отличается от вакуума).

Закон преломления (переход ¾воздух–среда¿).

1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно показателю преломле-

ния среды:

Поскольку n > 1, из соотношения (4.1 ) следует, что sin > sin , то есть > угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.

Показатель преломления непосредственно связан со скоростью v распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: v < c. И вот оказывается,

Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомби-

нируем формулы (4.1 ) и (4.2 ):

Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме c. Приняв это во внимание и глядя на формулу (4.3 ), делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.

4.3.2 Обратимость световых лучей

Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.

Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.

Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 4.12 ) Единственное отличие рис.4.12 от рис.4.11 состоит в том, что направление луча поменялось на противоположное.

Среда O

Рис. 4.12. Преломление луча на границе ¾среда–воздух¿

Раз геометрическая картинка не изменилась, той же самой останется и формула (4.1 ): отношение синуса угла к синусу угла по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол стал углом падения, а угол углом преломления.

В любом случае, как бы ни шёл луч из воздуха в среду или из среды в воздух работает следующее простое правило. Берём два угла угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.

Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.

4.3.3 Закон преломления (общий случай)

Пусть свет переходит из среды 1 с показателем преломления n1 в среду 2 с показателем преломления n2 . Среда с б´ольшим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.

Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 4.13 ). В этом случае угол падения больше угла преломления: > .

Рис. 4.13. n1 < n2 ) >

Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4.14 ). Здесь угол падения меньше угла преломления:

Рис. 4.14. n1 > n2 ) <

Оказывается, оба этих случая охватываются одной формулой общим законом преломления, справедливым для любых двух прозрачных сред.

Закон преломления.

1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая

в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:

Нетрудно видеть, что сформулированный ранее закон преломления для перехода ¾воздух– среда¿ является частным случаем данного закона. В самом деле, полагая в формуле (4.4 ) n1 = 1 и n2 = n, мы придём к формуле (4.1 ).

Вспомним теперь, что показатель преломления это отношение скорости света в вакууме к скорости света в данной среде: n1 = c=v1 , n2 = c=v2 . Подставляя это в (4.4 ), получим:

Формула (4.5 ) естественным образом обобщает формулу (4.3 ). Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.

4.3.4 Полное внутреннее отражение

При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление полное внутреннее отражение. Давайте разберёмся, что это такое.

Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света S, испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 4.15 ).

S B 1

Рис. 4.15. Полное внутреннее отражение

Луч SO1 падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч O1 A1 ) и частично отражается назад в воду (луч O1 B1 ). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии отражённому лучу.

Угол падения луча SO2 больше. Этот луч также разделяется на два луча преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч O2 A2 будет тусклее, чем луч O1 A1 (то есть получит меньшую долю энергии), а отражённый луч O2 B2 соответственно ярче, чем луч O1 B1 (он получит б´ольшую долю энергии).

По мере увеличения угла падения прослеживается та же закономерность: всё б´ольшая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!

Это исчезновение происходит при достижении угла падения 0 , которому отвечает угол преломления 90 . В данной ситуации преломлённый луч OA должен был бы пойти параллельно поверхности воды, да идти уже нечему вся энергия падающего луча SO целиком досталась отражённому лучу OB.

При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.

Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение 0 все такие лучи целиком отражаются назад в воду. Угол0 называется предельным углом полного отражения.

Величину 0 легко найти из закона преломления. Имеем:

sin 0

Но sin 90 = 1, поэтому

sin 0

0 = arcsin

Так, для воды предельный угол полного отражения равен:

0 = arcsin1; 1 33 48;8:

Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.

Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.