Источники звука. Звуковые колебания. Звуковые волны и их характеристики. Звуковые волны вокруг нас Механические колебания которые мы слышим

Звук , как мы помним, является упругими продольными волнами. А волны порождаются колеблющимися предметами.

Примеры источников звука : колеблющаяся линейка, один конец которой зажат, колеблющиеся струны, мембрана динамика.

Но не всегда колеблющиеся предметы порождают слышимый ухом звук – если частота их колебаний ниже 16 Гц, то они порождают инфразвук , а если больше 20кГц, то ультразвук .

Ультразвук и инфразвук – с точки зрения физики такие же упругие колебания среды, как и обычный звук, но ухо не способно их воспринять, так как эти частоты слишком далеки от резонансной частоты барабанной перепонки (перепонка просто не может колебаться с такой частотой).

Звуки высокой частоты ощущаются как более тонкие, звуки низкой частоты – как более басовитые.

Если колебательная система совершает гармонические колебания одной частоты, то её звук называется чистым тоном . Обычно источники звука издают звуки сразу нескольких частот – тогда наименьшая частота называется основным тоном , а остальные называются обертонами . Обертона определяют тембр звука – именно из-за них мы легко отличим пианино от скрипки, даже когда основная частота у них одинаковая.

Громкость звука – это субъективное ощущение, позволяющее сравнивать звуки как «более громкие» и «менее громкие». Громкость зависит от многих фактором – он частоты, от длительности, от индивидуальных особенностей слушателя. Но сильнее всего она зависит от звукового давления, которое напрямую связано с амплитудой колебаний того предмета, что издаёт звук.

Единица измерения громкости называется сон .

В практических задачах обычно используют величину, называемую уровень громкости или уровень звукового давления . Измеряется эта величина в белах [Б] или, чаще, в децибелах [дБ] .

Эта величина логарифмически зависит от звукового давления – то есть увеличение давления в 10 раз увеличивает уровень громкости на 1 дБ.

Звук листания газеты – это примерно 20 дБ, будильник – 80 дБ, звук взлетающего самолёта – это 100-120 дБ (на грани болевых ощущений).

Одно из необычных применений звука (точнее ультразвука) – это эхолокация . Можно издать звук и измерить время, через которое придёт эхо. Чем больше расстояние до препятствия, тем больше будет задержка. Обычно такой способ измерения расстояний используется под водой, но летучие мыши применяют его прямо в воздухе.

Расстояние при эхолокации определяется следующим образом:

2r = vt , где v – скорость звука в среде, t – время задержки до эха, r – расстояние до преграды.

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Источники звука. Звуковые колебания

Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам наслаждение. Мы с удовольствием слушаем человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.

Звук – это механические упругие волны, распространяющиеся в газах, жидкостях, твердых телах.

Причина звука - вибрация(колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

Источники звука - физические тела, которые колеблются, т.е. дрожат или вибрируют с частотой
от 16 до 20000 раз в секунду. Вибрирующее тело может быть твердым, например, струна
или земная кора, газообразным, например, струя воздуха в духовых музыкальных инструментах
или жидким, например, волны на воде.

Громкость

Громкость зависит от амплитуды колебаний в звуковой волне. За единицу громкости звука принят 1 Бел(в честь Александра Грэхема Белла, изобретателя телефона). На практике громкость измеряют в децибелах (дБ).1 дБ = 0,1Б.

10 дБ – шепот;

20–30 дБ – норма шума в жилых помещениях;
50 дБ – разговор средней громкости;
80 дБ – шум работающего двигателя грузового автомобиля;
130 дБ – порог болевого ощущения

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Высокие звуки представлены высокочастотными волнами – например, птичье пение.

Низкие звуки – это низкочастотные волны, например, звук двигателя большого грузовика.

Звуковые волны

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука.

Звуковая волна может проходить самые различные расстояния. Орудийная стрельба слышна на 10-15 км, ржание лошадей и лай собак - на 2-3 км, а шепот всего на несколько метров. Эти звуки передаются по воздуху. Но проводником звука может быть не только воздух.

Приложив ухо к рельсам, можно услышать шум приближающегося поезда значительно раньше и на большем расстоянии. Значит металл проводит звук быстрее и лучше, чем воздух. Вода тоже хорошо проводит звук. Нырнув в воду, можно отчетливо слышать, как стучат друг о друга камни, как шумит во время прибоя галька.

Свойство воды – хорошо проводить звук – широко используется для разведки в море во время войны, а также для измерения морских глубин.

Необходимое условие распространения звуковых волн – наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний.

Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю.

В каждой среде звук распространяется с разной скоростью.

Скорость звука в воздухе - приблизительно 340 м/с.

Скорость звука в воде - 1500 м/с.

Скорость звука в металлах, в стали - 5000 м/с.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

КАМЕРТОН

- это U-образная металлическая пластина , концы которой могут колебаться после удара по ней.

Издаваемый камертоном звук очень слабый и его слышно лишь на небольшом расстоянии.
Резонатор - деревянный ящик, на котором можно закрепить камертон, служит для усилениязвука.
Излучение звука при этом происходит не только с камертона, но и с поверхности резонатора.
Однако длительность звучания камертона на резонаторе будет меньше, чем без него.

Э Х О

Громкий звук, отражаясь от преград, возвращается к источнику звука спустя несколько мгновений, и мы слышим эхо.

Умножив скорость звука на время, прошедшее от его возникновения до возвращения, можно определить удвоенное расстояние от источника звука до преграды.
Такой способ определения расстояния до предметов используется в эхолокации.

Некоторые животные, например летучие мыши,
также используют явление отражения звука, применяя метод эхолокации

На свойстве отражения звука основана эхолокация.

Звук - бегущая механическая волна и передает энергию.
Однако мощность одновременного разговора всех людей на земном шаре едва ли больше мощности одного автомобиля «Москвич»!

Ультразвук.

· Колебания с частотами, превосходящими 20 000 Гц, называют ультразвуком. Ультразвук широко применяется в науке и технике.

· Жидкость вскипает при прохождении ультразвуковой волны (кавитация). При этом возникает гидравлический удар. Ультразвуки могут отрывать кусочки от поверхности металла и производить дробление твердых тел. С помощью ультразвука можно смешать не смешивающиеся жидкости. Так готовятся эмульсии на масле. При действии ультразвука происходит омыление жиров. На этом принципе устроены стиральные устройства.

· Широко используется ультразвук в гидроакустике. Ультразвуки большой частоты поглощаются водой очень слабо и могут распространяться на десятки километров. Если они встречают на своем пути дно, айсберг или другое твердое тело, они отражаются и дают эхо большой мощности. На этом принципе устроен ультразвуковой эхолот.

В металле ультразвук распространяется практически без поглощения. Применяя метод ультразвуковой локации, можно обнаружить мельчайшие дефекты внутри детали большой толщины.

· Дробящее действие ультразвука применяют для изготовления ультразвуковых паяльников.

Ультразвуковые волны , посланные с корабля, отражаются от затонувшего предмета. Компьютер засекает время появления эха и определяет местоположение предмета.

· Ультразвук применяют в медицине и биологии для эхолокации, для выявления и лечения опухолей и некоторых дефектов в тканях организма, в хирургии и травматологии для рассечения мягких и костных тканей при различных операциях, для сварки сломанных костей, для разрушения клеток (ультразвук большой мощности).

Инфразвук и его влияние на человека.

Колебания с частотами ниже 16 Гц называются инфразвуком.

В природе инфразвук возникает из-за вихревого движения воздуха в атмосфере или в результате медленных вибраций различных тел. Для инфразвука характерно слабое поглощение. Поэтому он распространяется на большие расстояния. Организм человека болезненно реагирует на инфразвуковые колебания. При внешних воздействиях, вызванных механической вибрацией или звуковой волной на частотах 4-8 Гц, человек ощущает перемещение внутренних органов, на частоте 12 Гц – приступ морской болезни.

· Наибольшую интенсивность инфразвуковых колебаний создают машины и механизмы, имеющие поверхности больших размеров, совершающие низкочастотные механические колебания (инфразвук механического происхождения) или турбулентные потоки газов и жидкостей (инфразвук аэродинамического или гидродинамического происхождения).

Цель урока: Сформировать представление о звуке.

Задачи урока:

Образовательные:

  • создать условия для активизации знаний учащихся о звуке, полученные при изучении естествознания,
  • способствовать расширению и систематизации знаний учащихся о звуке.

Развивающие:

  • продолжить развивать умение применять знания и собственный опыт в различных ситуациях,
  • способствовать развитию мышления, анализу полученных знаний, выделения главного, обобщения и систематизации.

Воспитательные:

  • способствовать формированию бережного отношения к себе и окружающим,
  • содействовать формированию гуманности, доброты, ответственности.

Тип урока: раскрывающий содержание.

Оборудование: камертон, шарик на нити, воздушный колокол, язычковый частотомер, набор дисков с разным количеством зубцов, открытка, линейка металлическая, мультимедийное оборудование, диск с презентацией , разработанной учителем к данному уроку.

Ход урока

Среди разнообразных колебательных и волновых движений, встречающихся в природе и технике, особо важное значение в жизни человека имеют звуковые колебания и волны, и просто звуки. В повседневной жизни – это чаще всего волны, распространяющиеся в воздухе. Известно, что звук распространяется и в других упругих средах: в земле, в металлах. Погрузившись с головой в воду, можно издали отчетливо услышать стук двигателя приближающегося катера. При осаде в крепостных стенах помещали «слухачей», которые следили за земляными работами противника. Иногда это были слепцы, у которых особенно обострен слух. По звукам, передающимся в Земле, был, например, своевременно обнаружен подкоп врага к стенам Загорского монастыря. Благодаря наличию у человека органа слуха он получает из окружающей среды с помощью звуков большую и разнообразную информацию. Посредством звуков осуществляется и человеческая речь.

Перед вами на столе находятся рабочие листы со строками из произведения Чарльза Диккенса «Сверчок за очагом». Каждый из вас должен подчеркнуть те слова, которые выражают звук.

1 вариант

  • Перепуганный косец пришел в себя только тогда, когда часы перестали трястись под ним, а скрежет и лязг их цепей и гирь окончательно прекратился. Немудрено, что он так разволновался: ведь эти дребезжащие, костлявые часы – не часы, а сущий скелет! – способны на кого угодно нагнать страху, когда начнут щелкать костями…
  • ….Тогда-то, заметьте себе, чайник и решил приятно провести вечерок. Что-то неудержимо заклокотало у него в горле, и он уже начал издавать отрывистое звонкое фырканье, которое тотчас обрывал, словно еще не решив окончательно, стоит ли ему сейчас показывать себя компанейским малым. Тогда-то, после двух-трех тщетных попыток заглушить в себе стремление к общительности, он отбросил всю свою угрюмость, всю свою сдержанность и залился такой уютной, такой веселой песенкой, что никакой плакса-соловей не мог за ним угнаться….
  • ….Чайник пел свою песенку так весело и бодро, что все его железное тело гудело и подпрыгивало над огнем; и даже сама крышка стала выплясывать что-то вроде джиги и стучать по чайнику (скрежет, лязг, дребезжащие, щелкать, звонкое фырканье, песенкой, залился, пел, гудело, стучать).

2 вариант:

  • Вот тут-то, если хотите, сверчок и вправду начал вторить чайнику! Он так громко подхватил припев на свой собственный стрекочущий лад – стрек, стрек, стрек! – голос его был столь поразительно несоразмерен с его ростом по сравнению с чайником, что если бы он тут же разорвался, как ружье, в которое заложен чересчур большой заряд, это показалось бы вам естественным и неизбежным концом, к которому он сам изо всех сил стремился.
  • ….Чайнику больше уже не пришлось петь соло. Он продолжал исполнять свою партию с неослабленным рвением, но сверчок захватил роль первой скрипки и удержал её. Боже ты мой, как он стрекотал! Тонкий, резкий, пронзительный голосок его звенел по всему дому и, наверное, даже мерцал, как звезда во мраке, за стенами. Иногда на самых громких звуках он пускал вдруг такую неописуемую трель, что невольно казалось – сам он высоко подпрыгивает в порыве вдохновения, а затем снова падает на ножки. Тем не менее они пели в полном согласии, и сверчок и чайник… Тема песенки оставалась все та же, и соревнуясь, они распевались все громче, и громче, и громче. (громко, припев, стрекочущий лад – стрек, стрек, стрек, разорвался, соло, стрекотал, резкий, пронзительный голосок, звенел, громких звуков, трель, пели, песенки, распевали, громче)

Мы живем в мире звуков. Раздел физики, изучающий звуковые явления, называется акустикой (слайд 1).

Источниками звука являются колеблющиеся тела (слайд 2) .

«Все, что звучит, обязательно колеблется, но не все, что колеблется, звучит».

Приведем примеры колеблющихся, но не звучащих тел. Язычки частотомера, длинная линейка. Какие примеры вы можете привести? (ветка на ветру, поплавок на воде и т.д.)

Укоротим линейку и услышим звук. Воздушный колокол также издает звуки. Докажем, что звучащее тело колеблется. Для этого возьмем камертон. Камертон представляет собой дугообразный стержень, закрепленный на держателе, ударим по нему резиновым молоточком. Поднеся звучащий камертон к маленькому шарику, висящему на нити, мы увидим, что шарик отклоняется.

Если провести звучащим камертоном по стеклу, покрытому сажей, мы увидим график колебаний камертона. Как называется такой график? (камертон совершает гармонические колебания )

Источниками звука могут быть жидкие тела, и даже газы. Воздух гудит в дымоходе и вода поет в трубах.

А какие примеры источников звука приведете вы? (механические часы, кипящий чайник, звук, издаваемый двигателем )

Когда тело звучит, оно колеблется, его колебания передаются близлежащим частицам воздуха, которые начинают колебаться и передают колебания соседним частицам, а те в свою очередь передают колебания дальше. В результате в воздухе образуются и распространяются звуковые волны.

Звуковая волна представляет собой зоны сжатия и разряжения упругой среды (воздуха), звуковая волна – продольная волна (слайд 3).

Мы воспринимаем звук благодаря нашему органу слуха – уху.

(Один из учеников рассказывает, как это происходит) (слайд 4).

(Другой ученик рассказывает о вреде наушников .)

«Изучая в течение двух месяцев поведение молодежи в столичном метрополитене, специалисты пришли к выводам, что в московском метро каждые 8 из 10 активных пользователей портативных электронных устройств слушают музыку. Для сравнения: при интенсивности звука в 160 децибел деформируются барабанные перепонки. Мощность звука, воспроизводимая плеерами через наушники, приравнивается к 110–120 децибел. Таким образом, на уши человека идет воздействие, равное тому, которое оказывается на человека, стоящего в 10 метрах от ревущего реактивного двигателя. Если такое давление на барабанные перепонки оказывается ежедневно, человек рискует оглохнуть. "За последние пять лет на прием стали чаще приходить молодые парни и девушки, – рассказала НИ отоларинголог Кристина Ананькина. – Все они хотят быть модными, постоянно слушать музыку. Однако длительное воздействие громкой музыки просто убивает слух". Если после рок-концерта организму нужно несколько дней, чтобы восстановиться, то при каждодневной атаке на уши времени на приведение слуха в порядок уже не остается. Слуховая система перестает воспринимать высокие частоты."Любой шум интенсивностью более 80 децибел негативно влияет на внутреннее ухо, – сообщает кандидат медицинских наук, сурдолог Василий Корвяков. – Громкая музыка поражает клетки, отвечающие за восприятие звука, особенно если атака идет прямо из наушников. Ситуацию ухудшает еще и вибрация в метро, которая также негативно влияет на структуру уха. В сочетании эти два фактора провоцируют острую тугоухость. Основная ее опасность в том, что она наступает буквально в одночасье, однако вылечить ее очень проблематично". Из-за шумового воздействия в нашем ухе отмирают волосковые клетки, отвечающие за передачу звукового сигнала в мозг. А способа восстановить эти клетки медицина пока не нашла».

Человеческое ухо воспринимает колебания частотой от 16–20000Гц. Все, что лежит до 16 Гц, – инфразвук, что после 20000Гц – ультразвук (слайд 6).

Сейчас мы прослушаем диапазон от 20 до 20000 Гц, и каждый из вас определит свой порог слышимости (слайд 5). (Генератор см. в Приложении 2)

Mногие животные слышат инфра- и ультра- звуки. Выступление учащегося (слайд 6).

Звуковые волны распространяются в твердых, жидких и газообразных телах, но не могут распространяться в безвоздушном пространстве.

Измерения показывают, что скорость звука в воздухе при 00С и нормальном атмосферном давлении равна 332 м/с. При повышении температуры скорость увеличивается. Для задач мы берем 340 м/с.

(Один из учеников решает задачу.)

Задача. Скорость звука в чугуне впервые была определена французским ученым Био следующим образом. У одного конца чугунной трубы ударяли в колокол, у другого конца наблюдатель слышал два звука: сначала – один, пришедший по чугуну, а, спустя некоторое время, – второй, пришедший по воздуху. Длина трубы 930 метров, промежуток времени между распространением звуков оказался равным 2,5с. Найдите по этим данным скорость звука в чугуне. Скорость звука в воздухе равна 340 м/с (Ответ: 3950 м/с).

Скорость звука в различных средах (слайд 7).

Мягкие и пористые тела – плохие проводники звука. Чтобы защитить какое-нибудь помещение от проникновения посторонних звуков, стены, пол и потолок прокладывают прослойками из звукопоглощающих материалов. Такими материалами являются: войлок, прессованная пробка, пористые камни, свинец. Звуковые волны в таких прослойках быстро затухают.

Мы видим, как многообразен звук, охарактеризуем его.

Звук, издаваемый гармонически колеблющимся телом, называется музыкальным тоном. Каждому музыкальному тону (до, ре, ми, фа, соль, ля, си) соответствует определенная длина и частота звуковой волны (слайд 8).

У нашего камертона тон ля, частота 440 Гц.

Шум – хаотическая смесь гармонических звуков.

Музыкальные звуки (тоны) характеризуются громкостью и высотой тона, тембром.

Слабый удар по ножке камертона вызовет колебания малой амплитудой, мы услышим тихий звук.

Сильный удар вызовет колебания с большей амплитудой, мы услышим громкий звук.

Громкость звука определяется амплитудой колебаний в звуковой волне (слайд 9).

Сейчас я буду вращать 4 диска, у которых разное количество зубцов. Я буду касаться открыткой этих зубцов. У диска с большими зубцами открытка колеблется чаще и звук выше. У диска с меньшим количеством зубцов открытка колеблется меньше и звук ниже.

Высота звука определяется частотой звуковых колебаний. Чем больше частота, тем выше звук. (слайд 10)

Самая высокая человеческая нота сопрано около 1300 Гц

Самая низкая человеческая нота басовая около 80 Гц.

У кого выше тон у комара или у шмеля? А как вы думаете, кто чаще машет крыльями комар или шмель.

Тембр звука – это своеобразная окраска звука, по которой мы различаем голоса людей различных инструментов (слайд 11).

Всякий сложный музыкальный звук состоит из ряда простых гармонических звуков. Самый низкий из них является основным. Остальные выше его в целое число раз, например, в 2 или 3–4 раза. Их называют обертонами. Чем больше к основному тону примешано обертонов, тем богаче будет звук. Высокие обертоны придают тембру «блеск» и «яркость» и «металличность». Низкие придают «мощность» и «сочность». А.Г.Столетов писал: «Простые тоны, какие мы имеем от наших камертонов – не употребляются в музыке, они так же пресны и безвкусны, как дистиллированная вода».

Закрепление

  1. Как называется учение о звуке?
  2. На Луне произошел сильный взрыв. Например, извержение вулкана. Услышим мы его на Земле?
  3. Голосовые связки колеблются с меньшей частотой у человека, поющего басом или тенором?
  4. При полете большинства насекомых издается звук. Чем он вызван?
  5. Как могли бы люди переговариваться на Луне?
  6. Почему при проверке колес вагонов во время остановки поезда их простукивают?

Домашнее задание: §34-38. Упражнение 30 (№ 2, 3).

Литература

  1. Курс физики, Ч II, для средней школы/Перышкин А.В. – М.: Просвещение, 1968. – 240с.
  2. Колебания и волны в курсе физике для средней школы. Пособие для учителей/Орехов В.П. – М.: Просвещение, 1977. – 176с.
  3. Сверчок за очагом/Диккенс Ч. – М.: Эксмо, 2003. – 640с.

Перейдём к рассмотрению звуковых явлений.

Мир окружающих нас звуков разнообразен - голоса людей и музыка, пение птиц и жужжание пчел, гром во время грозы и шум леса на ветру, звук проезжающих автомобилей, самолётов и других объектов.

Обрати внимание!

Источниками звука являются колеблющиеся тела.

Пример:

Закрепим в тисках упругую металлическую линейку. Если её свободную часть, длина которой подобрана определённым образом, привести в колебательное движение, то линейка будет издавать звук (рис. 1).

Таким образом, колеблющаяся линейка является источником звука.

Рассмотрим изображение звучащей струны, концы которой закреплены (рис. 2). Размытые очертания этой струны и кажущееся утолщение в середине свидетельствуют о том, что струна колеблется.

Если к звучащей струне приблизить конец бумажной полоски, то полоска будет подпрыгивать от толчков струны. Пока струна колеблется, слышен звук; остановим струну, и звук прекращается.

На рисунке 3 изображён камертон - изогнутый металлический стержень на ножке, который укреплён на резонаторном ящике.

Если по камертону ударить мягким молоточком (или провести по нему смычком), то камертон зазвучит (рис. 4).

Поднесём к звучащему камертону лёгкий шарик (стеклянную бусинку), подвешенный на нитке, - шарик будет отскакивать от камертона, свидетельствуя о колебаниях его ветвей (рис. 5).

Чтобы «записать» колебания камертона с малой (порядка \(16\) Гц) собственной частотой и большой амплитудой колебаний, можно к концу одной его ветви привинтить тонкую и узкую металлическую полоску с остриём на конце. Остриё необходимо загнуть вниз и слегка коснуться им лежащей на столе закопчённой стеклянной пластинки. При быстром перемещении пластинки под колеблющимися ветвями камертона остриё оставляет на пластинке след в виде волнообразной линии (рис. 6).

Волнообразная линия, прочерченная на пластинке остриём, очень близка к синусоиде. Таким образом, можно считать, что каждая ветвь звучащего камертона совершает гармонические колебания.

Различные опыты свидетельствуют о том, что любой источник звука обязательно колеблется, даже если эти колебания незаметны для глаза. Например, звуки голосов людей и многих животных возникают в результате колебаний их голосовых связок, звучание духовых музыкальных инструментов, звук сирены, свист ветра, шелест листьев, раскаты грома обусловлены колебаниями масс воздуха.

Обрати внимание!

Не всякое колеблющееся тело является источником звука.

Например, не издаёт звука колеблющийся грузик, подвешенный на нити или пружине. Перестанет звучать и металлическая линейка, если удлинить её свободный конец настолько, чтобы частота его колебаний стала меньше \(16\) Гц.

Человеческое ухо способно воспринимать как звук механические колебания с частотой в пределах от \(16\) до \(20000\) Гц (передающиеся обычно через воздух).

Механические колебания, частота которых лежит в диапазоне от \(16\) до \(20000\) Гц называются звуковыми.

Указанные границы звукового диапазона условны, так как зависят от возраста людей и индивидуальных особенностей их слухового аппарата. Обычно с возрастом верхняя частотная граница воспринимаемых звуков значительно понижается - некоторые пожилые люди могут слышать звуки с частотами, не превышающими \(6000\) Гц. Дети же, наоборот, могут воспринимать звуки, частота которых несколько больше \(20 000\) Гц.

Механические колебания, частота которых превышает \(20 000\) Гц, называются ультразвуковыми, а колебания с частотами менее \(16\) Гц - инфразвуковыми.

Ультразвук и инфразвук распространены в природе так же широко, как и волны звукового диапазона. Их излучают и используют для своих «переговоров» дельфины, летучие мыши и некоторые другие живые существа.

С помощью данного видеурока вы сможете изучить тему «Источники звука. Звуковые колебания. Высота, тембр, громкость». На этом занятии вы узнаете, что такое звук. Также мы рассмотрим диапазоны звуковых колебаний, воспринимаемые человеческим слухом. Определим, что может быть источником звука и какие необходимы условия для его возникновения. Также изучим такие характеристики звука, как высота, тембр и громкость.

Тема урока посвящена источникам звука, звуковым колебаниям. Поговорим мы и о характеристиках звука - высоте, громкости и тембре. Прежде чем говорить о звуке, о звуковых волнах, давайте вспомним, что механические волны распространяются в упругих средах. Часть продольных механических волн, которая воспринимается человеческими органами слуха, называется звуком, звуковыми волнами. Звук - это воспринимаемые человеческими органами слуха механические волны, которые вызывают звуковые ощущения .

Опыты показывают, что человеческое ухо, органы слуха человека воспринимают колебания частотами от 16 Гц до 20000 Гц. Именно этот диапазон мы и называем звуковым. Конечно, существуют волны, частота которых меньше 16 Гц (инфразвук) и больше 20000 Гц (ультразвук). Но этот диапазон, эти разделы человеческим ухом не воспринимаются.

Рис. 1. Диапазон слышимости человеческого уха

Как мы говорили, области инфразвука и ультразвука человеческими органами слуха не воспринимаются. Хотя могут восприниматься, например, некоторыми животными, насекомыми.

Что такое ? Источниками звука могут быть любые тела, которые совершают колебания со звуковой частотой (от 16 до 20000 Гц)

Рис. 2. Зажатая в тиски колеблющаяся линейка может быть источником звука

Обратимся к опыту и посмотрим, как образуется звуковая волна. Для этого нам потребуется металлическая линейка, которую мы зажмем в тиски. Теперь, воздействуя на линейку, мы сможем наблюдать колебания, но никакого звука не слышим. И тем не менее вокруг линейки создается механическая волна. Обратите внимание, когда линейка смещается в одну сторону, здесь образуется уплотнение воздуха. В другую сторону - тоже уплотнение. Между этими уплотнениями образуется разряжение воздуха. Продольная волна - это и есть звуковая волна, состоящая из уплотнений и разряжений воздуха . Частота колебаний линейки в данном случае меньше звуковой частоты, поэтому мы не слышим этой волны, этого звука. На основе опыта, который мы только что пронаблюдали, в конце XVIII века был создан прибор, который называется камертон.

Рис. 3. Распространение продольных звуковых волн от камертона

Как мы убедились, звук появляется в результате колебаний тела со звуковой частотой. Распространяются звуковые волны во все стороны. Между слуховым аппаратом человека и источником звуковых волн обязательно должна быть среда. Эта среда может газообразной быть, жидкой, твердой, но это обязательно должны быть частицы, способные передавать колебания. Процесс передачи звуковых волн должен обязательно происходить там, где есть вещество. Если вещества нет, никакого звука мы не услышим.

Для существования звука необходимы:

1. Источник звука

2. Среда

3. Слуховой аппарат

4. Частота 16-20000 Гц

5. Интенсивность

Теперь перейдем к обсуждению характеристик звука. Первая - это высота звука. Высота звука - характеристика, которая определяется частотой колебаний . Чем больше частота у тела, которое производит колебания, тем звук будет выше. Давайте вновь обратимся к линейке, зажатой в тиски. Как мы уже говорили, мы видели колебания, но не слышали звука. Если теперь длину линейки сделать меньше, то мы будем слышать звук, но увидеть колебания будет гораздо сложнее. Посмотрите на линейку. Если мы подействуем на нее сейчас, звука никакого мы не услышим, но зато наблюдаем колебания. Если укоротим линейку, мы услышим звук определенной высоты. Мы можем сделать длину линейки еще короче, тогда мы услышим звук еще большей высоты (частоты). То же самое мы можем пронаблюдать и с камертонами. Если мы возьмем большой камертон (он еще называется демонстрационный) и ударим по ножкам такого камертона, то можем пронаблюдать колебание, но звука не услышим. Если возьмем другой камертон, то, ударив по нему, услышим определенный звук. И следующий камертон, настоящий настроечный камертон, который используется для настройки музыкальных инструментов. Он издает звук, соответствующий ноте ля, или, как говорят еще, 440 Гц.

Следующая характеристика - тембр звука. Тембром называется окраска звука . Как можно проиллюстрировать эту характеристику? Тембр - это то, чем отличаются два одинаковых звука, исполненные различными музыкальными инструментами. Вы все знаете, что нот у нас всего семь. Если мы услышим одну и ту же ноту ля, взятую на скрипке и на фортепиано, то мы отличим их. Мы сразу сможем сказать, какой инструмент этот звук создал. Именно эту особенность - окраску звука - и характеризует тембр. Нужно сказать, что тембр зависит от того, какие воспроизводятся звуковые колебания, кроме основного тона. Дело в том, что произвольные звуковые колебания довольно сложные. Они состоят из набора отдельных колебаний, говорят спектра колебаний . Именно воспроизведение дополнительных колебаний (обертонов) и характеризует красоту звучания того или иного голоса или инструмента. Тембр является одним из основных и ярких проявлений звука.

Еще одна характеристика - громкость. Громкость звука зависит от амплитуды колебаний . Давайте посмотрим и убедимся, что громкость связана с амплитудой колебаний. Итак, возьмем камертон. Сделаем следующее: если ударить по камертону слабо, то амплитуда колебаний будет небольшая и звук будет тихий. Если теперь по камертону ударить сильнее, то и звук гораздо громче. Это связано с тем, что амплитуда колебаний будет гораздо больше. Восприятие звука - вещь субъективная, зависит от того, каков слуховой аппарат, каково самочувствие человека.

Список дополнительной литературы:

А так ли хорошо знаком вам звук? // Квант. — 1992. — № 8. — C. 40-41. Кикоин А.К. О музыкальных звуках и их источниках // Квант. — 1985. — № 9. — С. 26-28. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. - М., 1974.