Симметрия в природе. Удивительная симметрия природы Где встречается осевая симметрия

  • Симметрия в природе.

  • "Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство"

  • Герман Веель

Симметрия в природе.

    Симметрией обладают не только геометрические фигуры или вещи, сделанные рукой человека, но и многие творения природы (бабочки, стрекозы, листья, морские звезды, снежинки и т. д.). Особенно разнообразны свойства симметрии кристаллов... Одни из них более симметричны, другие — менее. Долгое время ученые-кристаллографы не могли описать всех видов симметрии кристаллов. Решил эту задачу в 1890 г. русский ученый Е. С Федоров. Он доказал, что есть ровно 230 групп, переводящих в себя кристаллические решетки. Это открытие значительно облегчило кристаллографам изучение видов кристаллов, которые могут существовать в природе. Следует, однако, заметить, что многообразие кристаллов в природе настолько велико, что даже использование группового подхода не дало еще способа описать все возможные формы кристаллов.


Симметрия в природе.

    Очень широко используется теория групп симметрии в квантовой физике. Уравнения, которыми описывается поведение электронов в атоме (так называемое волновое уравнение Шредингера), уже при небольшом числе электронов настолько сложны, что непосредственное решение их практически невозможно. Однако, используя свойства симметрии атома (неизменность электромагнитного поля ядра при поворотах и симметриях, возможность некоторых электронов между собой, т.е. симметричное расположение этих электронов в атоме и т.д.), удается исследовать их решения, не решая уравнений. Вообще, использование теории групп является мощным математическим методом исследования и учета симметрии явлений природы.


Симметрия в живой природе.


Зеркальная симметрия в природе.


Золотое сечение.

    ЗОЛОТОЕ СЕЧЕНИЕ — теоретически термин сформирован в эпоху Возрождения и обозначает строго определенное математическое соотношение пропорций, при котором одна из двух составных частей во столько же раз больше другой, во сколько сама меньше целого. Художники и теоретики прошлого нередко считали золотое сечение идеальным (абсолютным) выражением пропорциональности, на деле же эстетическое значение этого «непреложного закона» ограниченно в силу известной неуравновешенности горизонтального и вертикального направлений. В практике изобразительного искусства 3. с. редко применяется в его абсолютной, неизменной форме; большое значение имеют здесь характер и мера отклонений от абстрактной математической пропорциональности.


Золотое сечение в природе

  • Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах - рост вверх или расстилание по поверхности земли и закручивание по спирали.

  • Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

  • Рис.1. Спираль Архимеда.



Принципы формообразования в природе.

    В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции - длина ее хвоста так относится к длине остального тела, как 62 к 38. И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы - симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.


Золотое сечение в природе


Симметрия в искусстве.

  • В искусстве симметрия 1 играет огромную роль, многие шедевры архитектуры обладают симметрией. При этом обычно имеется в виду зеркальная симметрия. Термин "симметрия" в разные исторические эпохи использовался для обозначения разных понятий.

  • Симметрия - соразмерность, правильность в расположении частей целого.

  • Для греков симметрия означала соразмерность. Считалось, что две величины являются соразмерными, если существует третья величина, на которую эти две величины делятся без остатка. Здание (или статуя) считалось симметричным, если оно имело какую-то легко различимую часть, такую, что размеры всех остальных частей получались умножением этой части на целые числа, и таким образом исходная часть служила видимым и понятным модулем.


Золотое сечение в искусстве.

    Искусствоведы дружно утверждают, что на живописном полотне существуют четыре точки повышенного внимания. Располагаются они по углам четырехугольника, и зависят от пропорций подрамника. Считается, что какими бы ни были масштабы и размеры холста, все четыре точки обусловлены золотым сечением. Все четыре точки (их называют зрительными центрами) расположены на расстоянии 3/8 и 5/8 от краев Полагают, что это матрица композиции любого произведения изобразительного искусства.

    Вот, к примеру, поступившая в 1785 г. в Государственный Эрмитаж из Академии наук камея «Суд Париса». (Она украшает кубок Петра I.) Итальянские камнерезы не раз повторяли этот сюжет на камеях, инталиях и резных раковинах. В каталоге можно прочитать, что изобразительным прототипом послужила гравюра Маркантонио Раймонди по утраченному произведению Рафаэля.


Золотое сечение в искусстве.

  • И действительно, одна из четырех точек золотого сечения приходится на золотое яблоко в руке Париса. А если точнее, то на точку соединения яблока с ладонью.

  • Предположим, Раймонди сознательно высчитывал эту точку. Но вряд ли можно поверить, что и скандинавский мастер середины VIII века сначала сделал «золотые» вычисления, и по их результату задал пропорции бронзовому Одину.

  • Очевидно, это произошло бессознательно, то есть интуитивно. А если так, значит, золотое сечение не нуждается в том, чтобы мастер (художник или ремесленник) сознательно поклонялся «золоту». Достаточно, чтобы он поклонялся красоте.

  • Рис.2.

  • Поющий Один из Старой Ладоги.

  • Бронза. Середина VIII века.

  • Высота 5,4 см. ГЭ, № 2551/2.



Золотое сечение в искусстве.

  • «Явление Христа народу» Александра Иванова. Явственный эффект приближение Мессии к людям возникает из-за того, что он уже прошел точку золотого сечения (перекрестье оранжевых линий) и сейчас входит в ту точку, которую мы будем называть точкой серебряного сечения (это отрезок, деленный на число π, или отрезок минус отрезок, деленный на число π).


«Явление Христа народу».


    Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность - одна из загадок истории. Сам Леонардо да Винчи говорил: “Пусть никто, не будучи математиком, не дерзнет читать мои труды”. Он снискал славу непревзойденного художника, великого ученого, гения, предвосхитившего многие изобретения, которые не были осуществлены вплоть до XX в. Нет сомнений, что Леонардо да Винчи был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится “обо всем на свете”. Он писал справа налево неразборчивым почерком и левой рукой. Это самый известный из существующих образец зеркального письма. Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Существует очень много версий об истории этого портрета. Вот одна из них. Однажды Леонардо да Винчи получил заказ от банкира Франческо де ле Джокондо написать портрет молодой женщины, жены банкира, Монны Лизы. Женщина не была красива, но в ней привлекала простота и естественность облика. Леонардо согласился писать портрет. Его модель была печальной и грустной, но Леонардо рассказал ей сказку, услышав которую, она стала живой и интересной.


Золотое сечение в работах Леонардо да Винчи.

  • А при анализе трех портретов Работы Леонардо да Винчи оказывается, что у них практически идентичная композиция. И построена она не на золотом сечении, а на √2, горизонтальная линия которого на каждой из трех работ проходит через кончик носа.


Золотое сечение в картине И. И. Шишкина"Сосновая роща"

    На этой знаменитой картине И. И. Шишкина с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны - освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины по золотому сечению и дальше. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия, в соответствии с замыслом художника. Когда же замысел художника иной, если, скажем, он создает картину с бурно развивающимся действием, подобная геометрическая схема композиции (с преобладанием вертикалей и горизонталей) становится неприемлемой.


Золотая спираль в картине Рафаэля"Избиение младенцев"

    В отличии от золотого сечения ощущение динамики, волнения проявляется, пожалуй, сильней всего в другой простой геометрической фигуре - спирали. Многофигурная композиция, выполненная в 1509 - 1510 годах Рафаэлем, когда прославленный живописец создавал свои фрески в Ватикане, как раз отличается динамизмом и драматизмом сюжета. Рафаэль так и не довел свой замысел до завершения, однако, его эскиз был гравирован неизвестным итальянским графиком Маркантинио Раймонди, который на основе этого эскиза и создал гравюру"Избиение младенцев".

    На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка, - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Если естественным образом соединить эти куски кривой пунктиром, то с очень большой точностью получается...золотая спираль! Это можно проверить, измеряя отношение длин отрезков, высекаемых спиралью на прямых, проходящих через начало кривой.


Золотое сечение в архитектуре.

    Как указывает Г.И. Соколов, протяженность холма перед Парфеноном, длины храма Афины и участка Акрополя за Парфеноном соотносятся как отрезки золотой пропорции. При взгляде на Парфенон у места расположения монументальных ворот при входе в город (пропилеи) отношения массива скалы у храма также соответствует золотой пропорции. Таким образом, золотая пропорция была использована уже при создании композиции храмов на священном холме.

  • Многие исследователи, стремившиеся раскрыть секрет гармонии Парфенона, искали и находили в соотношениях ее частей золотое сечение. Если принять за единицу ширины торцовый фасад храма, то получим прогрессию, состоящую из восьми членов ряда: 1: j: j 2: j 3: j 4: j 5: j 6: j 7, где j =1,618 .


Золотое сечение в литературе.


Симметрия в повести «Собачье сердце»


Золотые пропорции в литературе. Поэзия и золотое сечение

    Многое в структуре поэтических произведений роднит этот вид искусства с музыкой. Четкий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений. Каждый стих обладает своей музыкальной формой - своей ритмикой и мелодией. Можно ожидать, что в строении стихотворений проявятся некоторые черты музыкальных произведений, закономерности музыкальной гармонии, а следовательно, и золотая пропорция.

    Начнем с величины стихотворения, то есть количества строк в нем. Казалось бы, этот параметр стихотворения может изменяться произвольно. Однако оказалось, что это не так. Например, проведенный Н. Васютинским анализ стихотворений А.С. Пушкина с этой точки зрения показал, что размеры стихов распределены весьма неравномерно; оказалось, что Пушкин явно предпочитает размеры в 5, 8, 13, 21 и 34 строк (числа Фибоначчи).


Золотое сечение в стихотворении А.С. Пушкина.

  • Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения. Рассмотрим, например, стихотворение А.С. Пушкина "Сапожник":


Золотые пропорции в литературе.

  • Одно из последних стихотворений Пушкина "Не дорого ценю я громкие права..." состоит из 21 строки и в нем выделяется две смысловые части: в 13 и 8 строк.


Областное бюджетное профессиональное образовательное учреждение

«Курский педагогический колледж»

Проект по предмету

«МАТЕМАТИКА»

тема:

С И М М Е Т Р И Я В ПРИРОДЕ

Специальность среднего профессионального образования

44.02.02 Преподавание в начальных классах.

Выполнила: студентка

группы 1 Д школьного отделения

Заикина Яна Александровна

Проверил: преподаватель математических дисциплин

Волчкова Наталья Николаевна

Курск, 2017

Введение …………………………………………………………………….....................4

ГЛАВА I . Что такое «симметрия»……………………………......................................6

1.1.Роль симметрии в нашей жизни………………………………….........................6

1.2. Что такое симметрия? В иды симметрии..............................................................7

1.2.1. Центральная симметрия..............................................................................12

1.2.2. Осевая симметрия........................................................................................12

      1. Зеркальная симметрия ………………….……….......................................14

        Поворотная симметрия................................................................................14

ГЛАВА II . Симметрия в природе …………………………........................................15

………………..................……............15

2.2. симметрия в живой природе. Асимметрия и симметрия. …...............................18

2.3. Симметрия растений ……………………….............................................................19

2.4. Симметрия животных ……………………………...................................................21

2.5. Симметрия в неживой природе................................................................................21

2.6. Человек ― существо симметричное …………………...........................................24

Заключение……………………………………………………….…..….......................26 Список литературы……………..........………………………………..........................27

Приложение……………………………………………………………………….........28



ВВЕДЕНИЕ

Симметрия "...быть прекрасным - значит быть симметричным и соразмерным."

Платон (древнегреческий философ, 428 – 348 г. до н.э.)

Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образцы, чей вид неизменно привлекает наш взгляд и ласкает наше внимание. Мы постоянно любуемся прелестью каждого отдельного цветка, мотылька или раковины и всегда пытаемся проникнуть в тайну их красоты. Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды ― от простейших до самых сложных.

Мы выбрали для исследования очень необычную тему: «Симметрия в природе», потому, что она связана с интересующим нас вопросом о гармонии нашего мира.

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. В своём проекте я покажу, что законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь подчиняются принципам симметрии. Мы узнаем, что существует множество видов симметрии, как в растительном, так и в животном мире, но при всём многообразии живых организмов, принцип симметрии действует всегда, и этот факт ещё раз подчёркивает гармоничность нашего мира. В нашей исследовательской работе будет отмечено так же, что помимо симметрии существует понятие и асимметрии. Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.

Асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. Для неживой материи характерно преобладание материи, при переходе от неживой к живой материи на микроуровне преобладает асимметрия.

Было интересно, потому что данная тема затрагивает не только математику, хотя она и лежит в её основе, но и другие областные науки, техники, природы. Симметрия, как мне кажется, является фундаментом природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений людей. Я обратила внимание на то, что во многих вещах, в основе красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды ― от простейших до самых сложных. Можно говорить о симметрии, как о гармонии пропорций, как о «соразмерности», регулярности и упорядоченности.

Нам это важно, потому что для многих людей математика ― скучная и сложная наука, но для меня математика ― не только цифры, уравнения и решения, но и красота в строении геометрических тел, живых организмов и даже является фундаментом для многих наук.

Цели исследовательской работы:

    Раскрыть особенности симметрии видов в природе.

    Показать всю привлекательность математики, как науки её взаимосвязь с природой в целом.

    Узнать, присутствует ли симметрия в окружающем нас мире.

    Изучить особенности различных видов симметрии в природе.

Для достижения поставленной цели, был определен ряд задач:

      1. Проанализировать литературу по исследуемой проблеме;

        Изучить основные виды симметрии ;

        Подбор материала по теме «Симметрия в природе», и его обработка.

        Систематизация и обобщение собранного материала.

Проблема:

Как часто встречаются симметричные и несимметричные формы в природе?

Как симметрия и асимметрия влияют на наше настроение?

Какова роль симметрии в природе?

Объектом исследования является понятие «симметрия».

Предмет исследования:

Особенности различных видов симметрии в природе.

Гипотеза исследования состоит в том, чтобы показать важную, исключительную роль принципа симметрии в научном познании мира

Глава 1. Что такое симметрия?

1.1. Роль симметрии в нашей жизни

Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик Вернадский, «слагалось в течение десятков, сотен, тысяч поколений». «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло её в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами. Но в известной мере и уверенностью человека в большей пригодности для практики правильных форм». Это слова другого нашего замечательного соотечественника, посвятившего изучению симметрии всю свою жизнь, академика А. В. Шубникова (1887 - 1970 гг.)

Первоначальное понятие о геометрической симметрии как о гармонии пропорций, как о «соразмерности», что и означает в переводе с греческого слова «симметрия», с течением времени приобрело универсальный характер и было осознано как всеобщая идея неизменности относительно некоторых преобразований.

Симметрия воспринимается в нашей жизни и вообще человеком как проявление закономерности, порядка, царящего в природе. Восприятие же закономерного всегда доставляет нам удовольствие, сообщает некоторую уверенность и даже бодрость.

В нашей жизни мы повседневно, всегда и везде встречаемся с симметрией. Это симметричные предметы и геометрические фигуры, живая природа и зеркальная симметрия и т.д. Итак, «сфера влияния» симметрии поистине безгранична. Природа - наука - искусство. Всюду мы видим противоборство, а часто и единство двух великих начал - симметрии и асимметрии, которые во многом определяют гармонию природы, мудрость науки и красоту искусства. Мы видели, что симметрия форм живой природы обязана своим существованием, прежде всего закону тяготения. Но тяготение - вечный закон природы; значит, вечна и симметрия и она всегда будет ассоциироваться с красотой.

Симметрия воспринимается нами, как покой, скованность, закономерность, тогда как асимметрия означает движение, свободу, случайность.

Теперь мы, понаблюдав и изучив специальную литературу, посмотрим, где найдет свое отображение симметрия. Почему симметрия буквально пронизывает весь окружающий нас мир?

1.2.Что такое симметрия. В иды симметрии

Существует множество понятий о симметрии.

Симметрия - это соответствие, неизменность (инвариантность), проявляемых при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого). Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте). Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.

Симметрия. Основное понятие.

Симметрия - определённый геометрический порядок в расположении сходственных частей тела, имеет непосредственное отношение к характеру. Симметрия является жизненно важным признаком, который отражает особенности строения, образа жизни и поведения животного.

Симметрия - соразмерность, одинаковость в расположении частей чего-либо по противоположным сторонам от точки, прямой или плоскости, прямой или плоскости.

Симметрия («соразмерность») - закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии.

При этом подразумевается, что соразмерность – часть гармонии, правильного сочетания частей целого. В физике общепринято выделять две формы симметрии: геометрическую и динамическую. Симметрии, выражающие свойства пространства и времени, относят к геометрической форме симметрии. Примерами геометрических симметрии являются: однородное пространство и время, изотропность пространства, пространственная четность, эквивалентность инерциальных систем отсчета. Симметрии, непосредственно не связанные со свойствами пространства и времени, выражающие свойства определенных физических взаимодействий, относят к динамической форме симметрии. К динамическим симметриям относят симметрии внутренних свойств объектов и процессов, например симметрии электрического заряда. Геометрические и динамические симметрии можно рассматривать еще в одном аспекте, как внешние и внутренние симметрии.

Отсутствие или нарушение симметрии называют асимметрией или аритмией.

К основным формам геометрической симметрии относятся:

зеркальная симметрия;

осевая симметрия;

центральная симметрия;

вращательная симметрия;

скользящая симметрия;

точечная симметрия;

поступательная симметрия;

винтовая симметрия;

неизометричная симметрия;

фрактальные симметрии.

Кроме этого существует:

радиальная симметрия;

прирадиальная симметрия;

билатеральная симметрия.

В курсе планиметрии мы познакомились с движениями плоскости, т. е. отображениями плоскости на себя, сохраняющими расстояния между точками. Введем теперь понятие движения пространства. Предварительно разъясним, что понимается под словами отображение пространства на себя. Допустим, что каждой точке М пространства поставлена в соответствие некоторая точка М 1 причем любая точка М 1 пространства оказалась поставленной в соответствие какой-то точке М. Тогда говорят, что задано отображение пространства на себя. Говорят также, что при данном отображении точка М переходит (отображается) в точку М 1 . Под движением пространства понимается отображение пространства на себя, при котором любые две точки А и В переходят (отображаются) в какие-то точки А1 и В 1 так, что А 1 В 1 =АВ. Иными словами, движение пространства - это отображение пространства на себя, сохраняющее расстояния между точками. Примером движения может служить центральная симметрия - отображение пространства на себя, при котором любая точка М переходит в симметричную ей точку М, относительно данного центра О.

Осевой симметрией с осью а называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей точку М 1 относительно оси а.

Зеркальной симметрией (симметрией относительно плоскости) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно плоскости точку М 1 .

Поворотная симметрия

Трансляционной симметрией называется многократное повторение одного и того же фрагмента структуры в пространстве или во времени. Примером трансляционной симметрии может служить любой орнамент.

Однако наряду с привычными формами симметрии существуют и другие виды симметрии:

Винтовая симметрия - объекта относительно группы преобразований, являющихся преобразования поворота объекта вокруг и его вдоль этой оси.

Поворотная симметрия предполагает наличие некоторого центра, относительно которого происходит многократный поворот одного итого же структурного фрагмента.

- термин, означающий симметрию объекта относительно всех или некоторых собственных вращений m -мерного . Собственными вращениями называются разновидности , сохраняющие ориентацию.

Симметрия в биологии - это закономерное расположение подобных (одинаковых, равных по размеру) частей тела или форм живого организма, совокупности живых организмов относительно центра или . Тип симметрии определяет не только общее строение тела, но и возможность развития систем органов животного. Строение тела многих многоклеточных организмов отражает определённые формы симметрии. Если тело животного можно мысленно разделить на две половины, правую и левую, то такую форму симметрии называют билатеральной. Этот тип симметрии свойственен подавляющему большинству видов, а также человеку. Если тело животного можно мысленно разделить не одной, а несколькими плоскостями симметрии на равные части, то такое животное называют радиально-симметричным. Этот тип симметрии встречается значительно реже.

Асимметрия - отсутствие симметрии. Иногда этот термин используется для описания организмов, лишённых симметрии первично, в противоположность диссимметрии - вторичной утрате симметрии или отдельных её элементов.

Понятия симметрии и асимметрии обратны. Чем более симметричен организм, тем менее он асимметричен и наоборот. Небольшое количество организмов полностью асимметричны. При этом следует различать изменчивость формы (например у ) от отсутствия симметрии. В и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные при сложении пополам в точности не совпадают.

У биологических объектов встречаются следующие типы симметрии:

Сферическая симметрия в трёхмерном пространстве на произвольные углы.

Аксильная симметрия (радиальная симметрия) - симметрия вращения неопределённого порядка) - симметричность относительно поворотов на произвольный угол вокруг какой-либо оси.

Симметрия вращения n -ого порядка - симметричность относительно на угол 360°/n вокруг какой-либо оси.

Двусторонняя ( ) симметрия - симметричность относительно плоскости симметрии (симметрия ).

Трансляционная симметрия - симметричность относительно в каком-либо направлении на некоторое расстояние (её частный случай у животных - ).

Триаксиальная асимметрия - отсутствие симметрии по всем трём пространственным осям.

РАДИАЛЬНАЯ СИММЕТРИЯ

В о радиальной симметрии говорят, когда через трёхмерное существо проходят одна или более осей симметрии. При этом радиальносимметричные животные могут и не иметь плоскостей симметрии. Так, у Velella имеется ось симметрии второго порядка и нет плоскостей симметриИ

Обычно через ось симметрии проходят две или более симметрии. Эти плоскости пересекаются по прямой - оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой). Таких осей симметрии может быть несколько (полиаксонная симметрия) или одна (монаксонная симметрия). Полиаксонная симметрия распространена среди (например, ).

Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосновной-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

Радиальная симметрия характерна для многих , а также для большинства . Среди них встречается так называемая , базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двусторонне симметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки.

Кроме типичной радиальной симметрии существует (две плоскости симметрии, к примеру, у ). Если плоскость симметрии только одна, то симметрия (такую симметрию имеют животные из группы ).

У часто встречаются радиальносимметричные : 3 плоскости симметрии ( ), 4 плоскости симметрии ( ), 5 плоскостей симметрии ( ), 6 плоскостей симметрии ( ). Цветки с радиальной симметрией называются актноморфные, цветки с билатеральной симметрией - зигоморфные.

БИЛАТЕРАЛЬНАЯ СИММЕТРИЯ

(двусторонняя симметрия) - симметрия зеркального отражения, при которой объект имеет одну плоскость симметрии, относительно которой две его половины зеркально симметричны. Если на плоскость симметрии опустить перпендикуляр из точки A и затем из точки О на плоскости симметрии продолжить его на длину AО, то он попадёт в точку A 1 , во всём подобную точке A. Ось симметрии у билатерально симметричных объектов отсутствует. У животных билатеральная симметрия проявляется в схожести или почти полной идентичности левой и правой половин тела. При этом всегда существуют случайные отклонения от симметрии (например, различия в папиллярных линиях, ветвлении сосудов и расположении родинок на правой и левой руках человека). Часто существуют небольшие, но закономерные различия во внешнем строении (например, более развитая мускулатура правой руки у праворуких людей) и более существенные различия между правой и левой половиной тела в расположении . Например, у обычно размещено несимметрично, со смещением влево.

У животных появление билатеральной симметрии в эволюции связано с ползанием по субстрату (по дну водоема), в связи с чем появляются спинная и брюшная, а также правая и левая половины тела. В целом среди животных билатеральная симметрия более выражена у активно подвижных форм, чем у сидячих.

Билатеральная симметрия свойственна всем достаточно высокоорганизованным , кроме . В других царствах живых организмов билатеральная симметрия свойственна меньшему числу форм. Среди протистов она характерна для (например, ), некоторых форм , , раковинок многих . У растений билатеральную симметрию имеет обычно не весь организм, а его отдельные части - или . Билатерально симметричные цветки ботаники называют зигоморфными.

1.2.1. Центральная симметрия

Введём понятие центральной симметрии: «Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры». Поэтому говорят, что фигура обладает центральной симметрией.

Понятия центра симметрии в «Началах» Евклида нет, но, однако в 38-ом предложении 6 книги содержится понятие пространственной оси симметрии. Впервые понятие центра симметрии встречается в шестнадцатом веке. В одной из теорем Клавиуса, гласящей: «Если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к рёбрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма ― точка пересечения его диагоналей. Любая прямая также обладает центральной симметрией. Однако, в отличии от окружности и параллелограмма, которые имеют только один центр симметрии, у прямой их бесконечно много ― любая точка прямой является центром её симметрии. Примером фигуры, не имеющей цента симметрии, является произвольный треугольник.

В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси координат, а график нечётной функции ― относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция ― осевой.

Таким образом, две центрально симметричные плоские фигуры всегда можно наложить друг на друга, не выводя их из общей плоскости. Для этого достаточно одну из них повернуть на угол 180 около центра симметрии. Как в случае зеркальной, так и в случае центральной симметрии плоская фигура непременно имеет ось симметрии второго порядка, но в первом случае эта ось лежит в плоскости фигуры, а во втором ― перпендикулярна к этой плоскости.

1.2.2. Осевая симметрия

Понятие осевой симметрии предоставлено следующим образом: «Фигура называется симметричной относительно прямой m , если для каждой точки фигуры симметричная ей точка относительно прямой, м также принадлежит этой фигуре. Прямая м называется осью симметрии фигуры». Тогда говорят, что фигура обладает осевой симметрией.

В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке С, соответствует такая принадлежащая этой же фигуре точка Д, что отрезок АВ перпендикулярен к оси, пересекает её и в точке пересечения делится пополам.

Приведём примеры фигур, обладающих осевой симметрий. У неразвёрнутого угла одна ось симметрии ― прямая, на которой расположена биссектриса угла.

Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси, а квадрат ― четыре оси симметрии. У окружности их бесконечно много ― любая прямая, проходящая через её центр, является осью симметрии. Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

1.2.3. Зеркальная симметрия

Зеркальной симметрией называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно плоскости а точку М 1 .

Зеркальная симметрия хорошо известна каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело).

Многие очень любят фотографировать природу. Особенно когда весной разливается река, то на дальних лугах можно увидеть красивую картину, когда в воде отражаются: облака, трава.

Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» - это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от неё, движется обратно параллельно направлению первого удара.

Важно отметить, что два симметричных друг другу тела, не могут быть вложены или наложены друг на друга. Так перчатку правой руки нельзя надеть на левую руку. Симметрично зеркальные фигуры при всём своём сходстве существенно отличаются друг от друга. Чтобы убедиться в этом, достаточно поднести лист бумаги к зеркалу и попытаться прочесть несколько слов, напечатанных на ней, буквы и слова просто-напросто будут перевёрнуты справа налево. По этой причине симметричные предметы нельзя назвать равными, поэтому их называют зеркально равными.

Две зеркально симметричные плоские плоские фигуры всегда можно наложить друг га друга. Однако для этого необходимо вывести одну из них (или обе) из их общей плоскости. Вообще зеркально равными телами (или фигурами) называются тела (или фигуры) в том случае, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела (или фигуры).


Поворотная симметрия - это симметрия, сохраняющаяся форму предмета при повороте вокруг некоторой оси на угол, равный 360°/n (или кратный этой величине), где n = 2, 3, 4, … Указанную ось называют поворотной осью n-го порядка.


При п=2 все точки фигуры поворачиваются на угол 1800 (3600 /2 = 1800)вокруг оси, при этом форма фигуры сохраняется, т.е. каждая точка фигуры переходит в точку той же фигуры(фигура преобразуется сама в себя). Ось называют осью второго порядка.

Предмет может иметь более одной поворотной оси: рис.1 – 3оси поворота, рис.2 -4 оси, рис 3 – 5 осей, рис. 4 – только 1 ось

Всем известные буквы «И» и «Ф» обладают поворотной симметрией. Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой. Иными словами, буква «И» симметрична относительно поворота на 180°, 180°= 360°: 2, n =2 , значит она обладает симметрией второго порядка.

Заметим, что поворотной симметрией второго порядка обладает также буква «Ф».

Кроме того буква и имеет центр симметрии, а буква Ф ось симметрии.

Вернемся к примерам из жизни: стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они, так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна поворотная, ось симметрии.

Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

Глава 2. Симметрия в природе

2.1. Значение симметрии в познании природы

Идея симметрии часто являлась основным пунктом в гипотезах и теориях учёных прошлого. Вносимая симметрией упорядоченность проявляется, прежде всего, в ограничении многообразия возможных структур, в сокращении числа возможных вариантов. В качестве важного физического примера можно провести факт существования определяемых симметрией ограничений разнообразия структур молекул и кристаллов. Поясним эту мысль на следующем примере. Допустим, что в некоторой отдалённой галактике обитают высокоразвитые существа, увлекающиеся среди прочих занятий также играми. Мы можем ничего не знать о вкусах этих существ, о строении их тела и особенностях психики. Однако, достоверно, что игральные кости имеют одну из пяти форм - тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Всякая иная форма форма игральной кости в принципе исключена, поскольку требование равно вероятности выпадения при игре любой грани предопределяет использование формы правильного многогранника, а таких форм только пять.

Идея симметрии часто служила учёным путеводной нитью при рассмотрении проблем мироздания. Наблюдая хаотическую россыпь звё1зд на ночном небе, мы понимаем, что за внешним хаосом скрываются вполне симметричные спиральные структуры галактик, а в них - симметричные структуры планетных систем. Симметрия внешней формы кристалла является следствием её внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов (молекул). Иначе говоря, симметрия кристалла связана с существованием пространственной решётки из атомов, так называемой кристаллической решётки.

Согласно современной точке зрения, наиболее фундаментальные законы природы носят характер запретов. Они определяют, что может, а что не может происходить в природе. Так, законы сохранения в физике элементарных частиц являются законами запрета. Они запрещают любое явление, при котором изменялась бы «сохраняющая величина», являющаяся собственной «абсолютной» константой (собственным значением) соответствующего объекта и характеризующая его «вес» в системе других объектов. И эти значения являются абсолютными до тех пор, пока такой объект существует.

В современной науке все законы сохранения рассматриваются именно как законы запрета. Так, в мире элементарных частиц многие законы сохранения получены как правила, запрещающие те явления, которые никогда не наблюдаются в экспериментах.

Видный советский ученый академик В. И. Вернадский писал в 1927 году: «Новым в науке являлось не выявление принципа симметрии, а выявление его всеобщности». Действительно, всеобщность симметрии поразительна. Симметрия устанавливает внутренние связи между объектами и явлениями, которые внешне никак не связаны.

Всеобщность симметрии не только в том, что она обнаруживается в разнообразных объектах и явлениях. Всеобщим является сам принцип симметрии, без которого по сути нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями.

Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твёрдого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идёт не только о физических законах, но и о других, например, биологических.

Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Следует выделить аспекты, без которых симметрия невозможна:

1) объект - носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д.

2) некоторые признаки - величины, свойства, отношения, явления - объекты, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными.

3) свойство объекта превращаться по выделенным признакам в самого себя после соответствующих изменений.

Важно подчеркнуть, что инвариант вторичен по отношению к изменению; покой относителен, движение абсолютно.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д. В связи с эти выделяются разные типы симметрии.

ПОВОРОТНАЯ СИММЕТРИЯ. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой при повороте на угол 2/ n , где n может равняться 2, 3, 4 и т.д. до бесконечности. Ось симметрии называется осью n -ного порядка.

ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ. О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние, а либо расстояние, кратное этой величине, она совмещается сама с собой. Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние а - элементарным переносом или периодом. С данным типом симметрии связано понятие периодических структур или решёток, которые могут быть и плоскими, и пространственными.

ЗЕРКАЛЬНАЯ СИММЕТРИЯ. Зеркально симметричным считается объект, состоящий из двух половин, которые являются зеркальными двойниками по отношению друг к другу. Трёхмерный объект преобразуется сам в себя при отражении в зеркальной плоскости, которую называют плоскостью симметрии.

Достаточно взглянуть на окружающий нас реальный мир, чтобы убедиться в первостепенном значении именно зеркальной симметрии с соответствующим симметричным элементом - плоскостью симметрии. В самом деле, форма всех объектов, которые двигаются по земной поверхности или возле неё - шагают, плывут, летят, катятся, - обладает, как правило, одной более или менее хорошо выраженной плоскостью симметрии. Всё то, что развивается или движется лишь в вертикальном направлении, характеризуется симметрией конуса, то есть имеет множество плоскостей симметрии, пересекающихся вдоль вертикальной оси. И то и другое объясняется действием силы земного тяготения, симметрия которого моделируется конусом.

СИММЕТРИИ ПОДОБИЯ представляют собой своеобразные аналоги предыдущих симметрией с той лишь разницей, что они связаны с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии являются матрёшки. Иногда фигуры могут обладать разными типами симметрии. Например, поворотной и зеркальной обладают некоторые буквы: Ж, Н, Ф, О, Х.

Существует много других видов симметрий, имеющих абстрактный характер.

Например, ПЕРЕСТАНОВОЧНАЯ СИММЕТРИЯ, которая состоит в том, что если тождественные частицы поменять местами, то никаких изменений не происходит; НАСЛЕДСТВЕННОСТЬ - это тоже определённая симметрия.

КАЛИБРОВОЧНЫЕ СИММЕТРИИ связаны с изменением масштаба.

В неживой природе симметрия, прежде всего, возникает в таком явлении природы, как кристаллы, из которых состоят практически все твёрдые тела.

Именно она и определяет их свойства. Самый очевидный пример красоты и совершенства кристаллов - это известная всем снежинка.

Внимательное наблюдение показывает, что основу красоты многих форм, созданных природой, составляет симметрия.

2.2. Симметрия в живой природе. Асимметрия и симметрия

Наиболее часто встречающиеся типы симметрии в живой природе:

В живой природе наиболее часто встречается симметрия зеркального отражения и радиальная симметрия. Радиальная симметрия - это ось симметрии бесконечного порядка. Ещё древние греки обратили внимание на этот факт.

Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времён и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В живой природе огромное большинство живых организмов обнаруживает различные виды симметрии (формы, подобия, относительного расположения). Причём организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

Внешняя симметрия может выступить в качестве основания классификации организмов (сферическая, осевая, радиальная и т.д.). Микроорганизмы, живущие в условиях слабого воздействия гравитации, имеют ярко выраженную симметрию формы.

Асимметрия присутствует уже на уровне элементарных частиц и проявляется в абсолютном преобладании в нашей Вселенной частиц над античастицами. Известный физик Ф. Дайсон писал: «Открытия последних десятилетий в области физики элементарных частиц заставляет нас обратить особое внимание на концепцию нарушения симметрии. Развитие Вселенной с момента её зарождения выглядит как непрерывная последовательность нарушений симметрии. В момент своего возникновения при грандиозном взрыве Вселенная была симметрична и однородна. По мере остывания в ней нарушается одна симметрия за другой, что создаёт возможности для существования всё большего и большего разнообразия структур. Феномен жизни естественно вписывается в эту картину. Жизнь ― это тоже нарушение симметрии».

Молекулярная асимметрия открыта Л. Пастером, который первым выделил «правые» и «левые» молекулы винной кислоты: правые молекулы похожи на правый винт, а левые ― на левый. Такие молекулы химики называют стереоизомерами.

Молекулы стереоизомеры имеют одинаковый атомный состав, одинаковые размеры, одинаковую структуру ― в то же время они различны, поскольку являются зеркально асимметричными, т.е. Объект оказывается не тождественным со своим зеркальным двойником. Поэтому здесь понятия «правый ― левый» условны.

В настоящее время хорошо известно, что молекулы органических веществ, составляющие основу живой материи, имеют асимметричный характер, т.е. В состав живого вещества они входят только либо как правые, либо как левые молекулы. Таким образом, каждое вещество может входить в состав живой материи только в том случае, если оно обладает вполне определённым типом симметрии. Например, молекулы всех аминокислот в любом живом организме могут быть только левыми, сахара ― только правыми. Это свойство продуктов вещества и его продуктов жизнедеятельности называют диссиметрией. Оно имеет совершенно фундаментальный характер. Хотя правые и левые молекулы неразличимы по химическим свойствам, живая материя их не только различает, но и делает выбор. Она отбраковывает и не использует молекулы, не обладающие нужной ей структурой. Как это происходит, пока не ясно. Молекулы противоположной симметрии для неё ― яд.

Если бы живое существо оказалось в условиях, когда вся пища была бы составлена из молекул противоположной симметрии, не отвечающей диссиметрии этого организма, то оно погибло бы от голода. В неживом веществе правых и левых молекул поровну.

Диссиметрия ― единственное свойство, благодаря которому мы можем отличать вещество биогенного происхождения от неживого вещества. Мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличить живое от неживого. Таким образом, асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. Для неживой материи характерно преобладание материи, при переходе от неживой к живой материи уже на микроуровне преобладает асимметрия. В живой природе асимметрию можно увидеть всюду. Очень удачно это подметил в романе «Жизнь и судьба» В. Гроссман: «В большом миллионе русских деревенских изб, нет, и не может быть неразличимо схожих. Всё живое ― неповторимо».

Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственно разным объектам, тогда как асимметрия связана с индивидуальным воплощением общего в конкретном объекте. На принципе симметрии основан метод аналогий, предполагающий отыскание общих свойств в различных объектах На основе аналогий создаются физические модели различных объектов и явлений. Аналогии между процессами позволяют описывать их общими уравнениями.

ОБЩАЯ ФОРМУЛА СИММЕТРИИ В БИОЛОГИИ

Рассмотрим тела, обладающие четырьмя плоскостями симметрии, пересекающимися на оси четвёртого порядка. Симметрию таких тел можно обозначить так: 4 ۰ t .

Общая формула симметрии таких фигур записывается в виде: N ۰ t , где N - символ оси, t - символ плоскости, t может быть равно 1, 2, 3... .

В биологии симметрия N ۰ t называется радиальной (из-за целого веера пересекающихся на оси плоскостей)

Билатеральная система - частный случай радиальной, так как в этом случае N =1 ۰ t .

2.3. Симметрия растений

Центральная симметрия образуется при повороте вокруг точки на угол 180 0. Ярко выраженной центральной симметрией обладают цветы и плоды растений.

Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля. Симметрию можно увидеть и на листьях деревьев.

Симметрию можно увидеть среди цветов. Осевой симметрией обладают цветы семейства розоцветных, а центральной симметрией - семейство крестоцветных.

Среди цветов наблюдаются поворотные симметрии разных порядков . Многие цветы обладают характерным свойством: цветок можно повернуть так, что каждый лепесток займёт положение соседнего, цветок же совместится с самим собой. Такой цветок обладает осью симметрии. Минимальный угол, на который нужно повернуть цветок вокруг оси симметрии, чтобы он совместился с самим собой, называется элементарным углом поворота оси. Этот угол для различных цветов не одинаков. Для ириса он равен 120 градусов, для колокольчика - 72 градуса, для нарцисса - 60 градусов. Поворотную ось можно характеризовать и с помощью другой величины, называемой порядком оси и показывающей, сколько раз произойдёт смещение при повороте на 360 градусов. Те же цветы нарцисса, колокольчика и нарцисса обладают осями третьего, пятого и шестого порядков соответственно.

Особенно часто среди цветов встречается симметрия пятого порядка. К ней относятся такие полевые цветы как колокольчик, незабудка, зверобой, лапчатка гусиная и др.; цветы плодовых растений - вишня, яблоня, груша, мандарин и др.; цветы плодово-ягодных растений - земляника, ежевика, малина, шиповник и др.; садовые цветы - настурция, флокс и др.

В пространстве существуют тела, обладающие винтовой симметрией, т.е. Совмещающиеся со своим первоначальным положением после поворота на угол поворота вокруг оси, дополненного сдвигом той же оси.

Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса, что буквально означает строение листа. Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно чётко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.

Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. У любого древа есть основание и вершина, «верх» и «них», выполняющие различные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси «древесного конуса» и плоскостей симметрии.

Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия пятого порядка, которая принципиально невозможна в периодических структурах неживой природы. Этот факт академик Н. Белов объясняет тем, что ось пятого порядка - своеобразный инструмент борьбы за существование, «страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решёткой». Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решёткой. Однако, упорядоченные структуры в ней представлены очень широко.

Соты - настоящий конструкторский шедевр. Они состоят из ряда шестигранных ячеек. Это самая плотная упаковка, позволяющая наивыгоднейшим образом разместить в ячейке личинку и при максимальном возможном объёме наиболее экономно использовать строительный материал - воск

2.4. Симметрия животных

Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды - от простейших до самых сложных. Симметрия в строении животных - почти общее явление, хотя почти всегда встречаются исключения из общего правила.

Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, такие как радиальную (лучевую) или билатеральную (двустороннюю), которые являются основными типами симметрии. Кстати, склонность к регенерации (восстановление) зависит от типа симметрии животного.

В биологии о радиальной симметрии идёт речь, когда через трёхмерное существо проходят или более плоскости симметрии. Эти плоскости пересекаются в прямой. Если животное будет вращаться вокруг оси на определённый градус, то оно будет отражаться само на себе. В двухмерной проекции радиальная симметрия может сохраняться, если ось направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии.

Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих, кишечнополостных. Взрослые формы иглокожих приближаются к радиальной симметрии, в то время как их личинки билатерально симметричны.

Лучевую симметрию мы также видим у медуз, кораллов, актиний, морских звёзд. Если вращать их вокруг собственной оси, они несколько раз «совместятся сами с собой». Если отрезать у морской звезды любое из пяти щупалец, оно сумеет восстановить всю звезду. От радиальной симметрии различаются двулучевая радиальная симметрия (две плоскости симметрии, к примеру, гребневики), а также билатеральная симметрия (одна плоскость симметрии, к примеру, двусторонне-симметричные).

При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих. Например, черви, членистоногие, позвоночные. У большинства многоклеточных (у человека в том числе) другой тип симметрии - двусторонняя. Левая половина их тела это как бы «отражённая в зеркале правая». Этот принцип, однако, не относится к отдельным внутренним органам, что демонстрирует, например, расположение печени или сердца у человека. Плоский червь планария имеет двустороннюю симметрию. Если разрезать его вдоль оси тела или поперёк, из обеих половинок вырастут новые черви. Если же измельчить планарию как-нибудь иначе - скорее всего ничего не выйдет.

Типы симметрии у животных:

    центральная

    осевая

    радиальная

    билатеральная

    двулучевая

    поступательная (метамерия)

    поступательно-вращательная [ 10 ]

Ось симметрии - это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом - подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадей осью тела.

Плоскость симметрии - это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами (anti - против; mer - часть). Например, у гидры плоскость симметрии должна пройти через ротовое отверстие и через подошву. Антимеры противоположных половин должны иметь ровное количество щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырём. У гребневиков только две плоскости симметрии -глоточная и щупальцевая. Наконец, у двусторонне-симметричных организмов только одна плоскость и только две зеркальные антимеры - соответственно правая и левая стороны животного.

Можно сказать также, что каждое животное (будь то насекомое, рыба или птица) состоит из двух анантиоморфов - правой и левой половин. Анантиоморфы - пара зеркально асимметричных объектов (фигур), являющихся зеркальным изображением один другого (например, пара перчаток). Иными словами - это объект и его зазеркальный двойник при условии, что сам объект зазеркально асимметричен.

Сферическая симметрия имеет место у радиолярий и солнечников, тело которых сферической формы, а его части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.

    1. Симметрия в неживой природе

Однако симметрия существует и там, где её не видно на первый взгляд. Физик сказал, что всякое твёрдое тело - кристалл. Знаменитый кристаллограф Евграф Степанович Фёдоров сказал: «Кристаллы блещут симметрией». Химик скажет, что все тела состоят из атомов. А многие атомы располагаются в пространстве по принципу симметрии.

В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка - это маленький кристалл замёрзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией.


2.5. ЧЕЛОВЕК - СУЩЕСТВО СИММЕТРИЧНОЕ

Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И всё же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы! Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путём трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так. Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.

Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи. Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в едином соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя). В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлинённым черепом и, наоборот. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако, наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но неодинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчёркивают эту симметрию. И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, левая штанина - правой. Пуговицы на куртке или рубашке сидят ровно посередине, а если и отступают от неё, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчёсывая волосы на косой пробор - слева или справа или делая асимметричную стрижку. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или, надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки. Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от неё и придают индивидуальные, характерные черты. И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, в одной - красной, а в другой - чёрной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цветными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.

ЗАКЛЮЧЕНИЕ

С симметрией мы встречаемся везде - в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике, математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии. Существует множество видов симметрии, как в растительном, так и в животном мире, но при всём многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчёркивает гармоничность нашего мира. Ещё одним интересным проявлением симметрии являются биологические ритмы (биоритмы), циклические колебания биологических процессов и их характеристик (сокращения сердца, дыхание, колебания интенсивности деления клеток, обмена веществ, двигательной активности, численности растений и животных), зачастую связанные с приспособлением организмов к геофизическим циклам. Исследованием биоритмов занимается особая наука - хронобиология. Помимо симметрии существует также понятие асимметрии. Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте. Симметрия окружает человека на каждом шагу. В природе и во многих творениях человека без симметрии не было бы красоты, совершенства и удобства. Как бы мы жили без симметрии? Неужели лишь она украшает наш мир? Да, без симметрии наш мир выглядел бы совсем по-другому. Ведь именно на симметрии основаны многие законы сохранения. Например, законы сохранения энергии, импульса и момента импульса являются следствиями пространственно-временных симметрий. И без симметрии не было бы законов сохранения, которые во многом управляют нашим миром.

ТАК ЧТО СИММЕТРИЯ - ОДНО ИЗ ГЛАВНЫХ ПОНЯТИЙ ВО ВСЕЛЕННОЙ!

Список литературы

1. Атанасян, Л. С. Бутузов В. Ф. «Геометрия 10 - 11 класс»

2. Вейль, Г.«Симметрия» Москва, 2002

3. Виленкин, З. Н. «Симметрия в природе и технике» М.: Едиториал УРСС, 2003 г.

4. Выгодский, М. Я «Справочник по элементарной математике»

Издательство «Наука». - Москва, 1971 г.

5. Гика М. «Эстетика пропорций в природе и искусстве» Москва, 1936 г.

6. Гильде, В.«Зеркальный мир» Мир, 1982 г.

7. Даль, В. И. «Толковый словарь живого великорусского языка» Москва, 1978 г..

8. Ожегов, С. И. Толковый словарь русского языка / Ожегов, С. И.,. Шведова, Н. Ю – М.: Просвещение, 2010.Емельянов В. «Фундаментальные симметрии»МИФИ, 2008 г.

9. Тарасов, С Л. «Этот удивительно симметричный мир» Издательство: - М.: Просвещение, 2002 г.

10. Тарасов, С. Л«Симметрия в окружающем мире» ОНИКС, 2005 г

11. Урманцев, Ю. А. Симметрия природы и природа симметрии /. Урманцев. Ю.А- М.: Мысль, 1974 г.

12. Шубников А. В., «Симметрия в науке и искусстве» Москва, 1972 г..

13.

14.
















Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Всероссийский к онкурс ученических рефератов «Кругозор»

МОУ «СОШ с. Петропавловка Дергачёвского района

Саратовской области »

РЕФЕРАТ

по математике , биологии, экологии на тему:

«Симметрия в природе»

учащийся 6 класса МОУ

Руководители: Кутищева Нина Семеновна,

Руденко Людмила Викторовна,

Введение

1. Теоретическая часть

1.1.1 Развивающее учение о симметрии

1.1.2 Осевая симметрия фигур

1.1.3 Центральная симметрия

1.1.4 Симметрия относительно плоскости

2. Практическая часть

2.2 Обоснование причины симметрии у растений

Заключение

Литература

симметрия растение геометрия точка

Введение

«Симметрия является той идеей, с помощью

которой человек веками пытается объяснить

и создать порядок, красоту и совершенство» Герман Вейль.

Летом я отдыхал на берегу Волги в замечательном местечке Саратовской области «Чардым». Меня, жителя степного Заволжья, поразило окружавшее буйство зелени, разнообразие растений, и я с интересом рассматривал окружающую меня природу. Я невольно задался вопросом: а нет ли чего-то общего в формах растений, животных? Возможно, существуют какая-то закономерность, какие-то причины, придающие такое неожиданное сходство самым разнообразным листьям, цветам, животному миру? Внимательно приглядываясь к окружающей природе, я заметил, что форма листьев всех растений подчиняется строгой закономерности: листок как бы склеен из двух более или менее одинаковых половинок. Тем же свойством обладают и бабочки. Мы их можем мысленно разделить вдоль на две зеркально равные части.

На уроках математики мы рассматривали симметрию на плоскости относительно точки и прямой, фигуры в пространстве, симметричные относительно плоскости. Так вот оно в чём дело! Вот она закономерность, которую я чувствовал в своих наблюдениях, но не мог объяснить! Законы симметрии - вот чем можно объяснить такую похожесть в листьях, цветах, животном мире.

И я задался целью выяснить: существует ли симметрия в царстве растений и чем она обусловлена. Для ее реализации мною были сформулированы следующие задачи:

1. Познакомиться подробнее с геометрическими законами симметрии.

2. Выявить причины, обуславливающие симметрию в природе.

1. Теоретическая часть

1.1 Основные понятия о симметрии и геометрии растений

1.1.1 Развивающееся учение о симметрии

Слово «симметрия» от греческого symmetria -- соразмерность. Именно она позволит охватить самые разнообразные тела с единых геометрических позиций.

Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: живой, неживой природы и общества. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Знаменитый академик В.И. Вернадский считал, что «… представление о симметрии слагалось в течение десятков, сотен, тысяч поколений. Правильность его проверена реальным опытом и наблюдением, бытом человечества в разнообразнейших природных условиях.

Понятие «симметрия» выросло на изучении живых организмов и живого вещества, в первую очередь человека. Само понятие, связанное с понятием красоты или гармонии, было дано великими греческими ваятелями, и слово «симметрия» этому явлению отвечающее, приписывается скульптуру Пифагору из Регнума (Южная Италия, тогда Великая Греция), жившему в V веке до нашей эры».

А другой известный академик А.В. Шубников (1887-1970) в предисловии к своей книге «Симметрия» писал: «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но и в известной мере и уверенностью человека в большей пригодности для практики правильных форм.

Уверенность эта продолжает существовать и до сих пор, находя свое отражение во многих областях человеческой деятельности: искусстве, науке, технике и т.д.».

Но какое же значение заключено в этом, безусловно, классическом понятии? Существует множество определений симметрии:

1. «Словарь иностранных слов»: «Симметрия - [греч. symmetria] - полное зеркальное соответствие в расположении частей целого относительно средней линии, центра; соразмерность».

2. «Краткий Оксфордский словарь»: «Симметрия - красота, обусловленная пропорциональностью частей тела или любого целого, равновесием, подобием, гармонией, согласованностью».

3. «Словарь С.И. Ожегова»: «Симметрия - соразмерность, пропорциональность частей чего-нибудь, расположенных по обе стороны от середины, центра».

4. В.И. Вернадский. «Химическое строение биосферы Земли и ее окружения»: «В науках о природе симметрия есть выражение геометрически пространственных правильностей, эмпирически наблюдаемых в природных телах и явлениях. Она, следовательно, проявляется, очевидно, не только в пространстве, но и на плоскости и на линии».

Но наиболее полным и обобщающим все вышеперечисленные определения мне кажется мнение Ю.А. Урманцева: «Симметрией называется всякая фигура, которая может совмещаться сама с собой в результате одного или нескольких последовательно произведенных отражений в плоскостях. Другими словами, про симметричную фигуру можно сказать: «Eadem mutate resurgo» - «Измененная, я воскресаю той же самой» - надпись под очаровавшей Якоба Бернулли (1654-1705) логарифмической спиралью».

1.1.2 Осевая симметрия фигур

Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а, также принадлежит этой фигуре.

Рассматривая различные фигуры, мы замечаем, что некоторые из них симметричны относительно оси, т.е. отображаются на себя при симметрии относительно этой оси.

Ось симметрии делит такую фигуру на две симметричные фигуры расположенные в разных полуплоскостях определяемых осью симметрии. (рис. 1.)

Некоторые фигуры имеют несколько осей симметрии. Например круг (рис. 2) симметричен относительно любой прямой проходящей через его центр. Перегибанием чертежа по диаметру начерченного круга можно убедиться в том, что две части круга совпадают. Поэтому любой диаметр лежит на оси симметрии круга.

Отрезок имеет две оси симметрии: он симметричен относительно перпендикулярной к нему прямой, проходящей через его середину, и относительно прямой, на которой этот отрезок лежит (рис. 3).

1.1.3 Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 .

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.

Центральная симметрия как частный вид поворота вокруг заданной точки, обладает всеми свойствами поворота. В частности, при центральной симметрии сохраняются расстояния, поэтому центральная симметрия есть перемещение. Отсюда следует, что если одна из двух фигур отображается на другую центральной симметрией, то эти фигуры равны.

Прямая, проходящая через центр симметрии отображается центральной симметрией на себя.

Для каждой точки плоскости существует единственная ей симметричная точка относительная данного центра; если точка А совпадает с центром симметрии то и симметричная ей точка В совпадает с центром симметрии.

Подобно тому как осевая симметрия однозначно определяется своей осью, так и центральная симметрия однозначно определяется своим центром.

Некоторые фигуры имеют центр симметрии - это значит, что для каждой точки этой фигуры центрально симметричная ей точка также принадлежит этой фигуре. Такие фигуры называют центрально-симметричными. Например, отрезок - центрально симметричная фигура, центром симметрии которой служит его середина; прямая - центрально-симметричная фигура относительно любой ее точки; окружность - центрально-симметричная фигура относительно ее центра; пара вертикальных углов есть центрально-симметричная фигура с центром симметрии в общей вершине углов.

1.1.4 Симметрия относительно плоскости (зеркальная симметрия)

Две точки А и А1 называются симметричными относительно плоскости б, если эта плоскость проходит через середину отрезка АА1 и перпендикулярна к нему (рис. 4).

Размещено на http://www.allbest.ru/

Фигура называется симметричной относительно плоскости б, если для каждой точки фигуры симметричная ей точка относительно плоскости, также принадлежит этой фигуре (рис. 5).

Размещено на http://www.allbest.ru/

В дальнейшем чаще всего мы будем иметь дело с тремя типами элементов симметрии: плоскость, оси, и центр.

Итак, мы познакомились с исчерпывающим перечнем элементов симметрии. В нашем распоряжении имеется полный набор разных элементов симметрии для конечных фигур. Для полной характеристики таких фигур необходимо учитывать совокупности всех элементов симметрии, присутствующих на данном объекте.

1.2 Форма и симметрия растений

С осевой симметрией мы встречаемся не только в геометрии, но и в природе. В биологии принято и правильно говорить не об осевой, а о двусторонней, билатеральной симметрии или зеркальной симметрии пространственного объекта. Двусторонняя симметрия характерна для большинства многоклеточных животных и возникла в связи с активным передвижением. Также двусторонней симметрией обладают насекомые и некоторые растения. К примеру, форма листка не является случайной, она строго закономерна. Он как бы склеен из двух более или менее одинаковых половинок. Одна из этих половинок расположена зеркально относительно другой, совсем так, как располагаются друг относительно друга, отражение какого-либо предмета в зеркале и сам предмет. Для того, чтобы убедиться в сказанном, поставим зеркальце с прямым краем на линию, идущую вдоль черенка и разделяющую пластинку листка пополам. Заглянув в зеркальце, мы увидим, что отражение правой половины листка более или менее точно заменяют его левую половину и, наоборот, левая половина листка в зеркальце как бы перемещается на место правой половины. Плоскость, разделяющая листок на две зеркально равные части называется плоскостью симметрии. Ботаники называют такую симметрию билатеральной или дважды боковой. Но не только древесный листок обладает такой симметрией. Мысленно можно разрезать на две зеркально равные части обыкновенную гусеницу. Да и нас самих можно разделить на две равные половины. Всё, что растёт и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии. Эта же симметрия сохраняется у организмов, получивших возможность перемещаться. Хоть и без определённой направленности. К таким существам относятся морские звёзды и ежи.

Лучевая симметрия характерна, как правило, для животных, ведущих прикреплённый образ жизни. К таким животным относится гидра. Если вдоль тела гидры провести ось, то её щупальца будут расходиться от этой оси во все стороны, как лучи. Если рассмотреть лепестки ромашки, то можно увидеть, что они имеют тоже плоскость симметрии. Это далеко не всё. Ведь лепестков много и вдоль каждого можно провести плоскость симметрии. Значит, этот цветок обладает многими плоскостями симметрии, и все они пересекаются в его центре. Этот целый веер или пучок пересекающихся плоскостей симметрии. Сходным образом можно охарактеризовать и геометрию подсолнечника, василька, колокольчика. Такая симметрия, как у ромашек, грибов, ели называется радиально-лучевой. В морской среде такая симметрия не препятствует направленному плаванью животных. Такой симметрией обладает медуза. Выталкивающая из-под себя воду нижними краями тела, похожими по форме на колокол(морские ежи, звёзды). Таким образом, можно сделать вывод всё, что растёт или движется по вертикали вниз или вверх относительно земной поверхности, подчиняется радиально-лучевой симметрии.

Характерная для растений симметрия конуса хорошо видна на примере любого дерева.

Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть внизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления "вверх" и "вниз" для дерева, существенно различны. А направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии.

У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная - для двудольных.

Весьма редко тело растения построено одинаково по всем направлениям. По большей части в нем можно различить верхний (передний) и нижний (задний) конец. Линия, соединяющая оба эти конца, именуется продольной осью. По отношению к этой продольной оси органы и ткани растения могут быть распределены различно.

1) Если через продольную ось можно провести не менее двух плоскостей, делящих рассматриваемую часть растения на одинаковые симметричные половины, то расположение именуют лучевым (многосимметрическое расположение). Большинство корней, стеблей и цветов построены по лучевому типу.

2) Если через продольную ось можно провести лишь одну плоскость, делящую растение на симметричные половины, то говорят о дорзивентральном (моносимметрическом) расположении. При отсутствии плоскостей симметрии орган именуют асимметрическим. Наконец, бисимметрическими или билатеральными называют такие органы, у которых можно различить правую и левую, переднюю и заднюю стороны, причем правая симметрична левой, передняя - задней, но правая и передняя, левая и задняя совершенно различны. Таким образом, здесь имеется две неодинаковые плоскости симметрии. Такое расположение получается, например, если цилиндрический орган будет сплющен в одном каком-либо направлении. Так, бисимметричны уплощенные стебли кактусов Opuntia, бисимметрично слоевище многих морских водорослей, таких, как Fucus, Laminaria и проч. Бисимметричные органы образуются обыкновенно из лучевых, что особенно хорошо видно на кактусах или на фукусе. Что касается в частности цветов, то лучевые чаще называются звездчатыми (актиноморфными), а дорзивентральные - зигоморфными.

2. Практическая часть

2.1 Особенности каждого типа симметрии

Два вида симметрии с необычным упорством повторяются вокруг нас. В этом убедился, просматривая фотографии, сделанные во время отдыха.

Меня окружали различные цветы, деревья. Подул ветерок, и листок с дерева упал мне прямо на рукав. Форма его не является случайной, она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок. Одна из этих половинок расположена зеркально относительно другой, совсем так, как располагаются друг относительно друга отражение какого- либо предмета в зеркале и сам предмет. Чтобы убедиться в этом, я поставил карманное зеркальце с прямым краем на линию, идущую вдоль черенка и разделяющую пластинку листа пополам. Заглянув в зеркальце, я увидел, что отражение правой половины листа более или менее точно заменяет его левую половину и, наоборот, левая половина листка в зеркальце как бы перемещается на место правой половины.

Плоскость, разделяющая листок на две зеркально равные части (которая сейчас совпадает с плоскостью зеркала), называется «плоскостью симметрии». Ботаники и зоологи называют такую симметрию билатеральной (в переводе с латинского дважды боковой).

Только ли древесный листок обладает такой симметрией?

Если посмотреть на красавицу бабочку с яркой расцветкой, она тоже состоит из двух одинаковых половинок. Даже пятнистый узор на ее крыльях подчиняется такой геометрии.

И выглянувший из травы жучок, и промелькнувшая мошка, и сорванная ветка, - все подчиняется «билатеральной симметрии». Итак, повсюду в лесу мы наталкиваемся на билатеральную симметрию. Может быть любое существо обладает плоскостью симметрии и следовательно, подходит тем самым под билатеральную симметрию.

На первый взгляд может показаться, что подходит, но не все так просто, как кажется. Возле куста скромно выглядывает из травы обыкновенный поповник (ромашка). Я сорвал его и рассмотрел. Вокруг желтой середки, как лучи вокруг солнышка на детском рисунке, расположены белые лепестки.

Имеет ли такое «цветочное солнышко» плоскость симметрии? Конечно! Без всякого труда можно его разрезать на две зеркально равные половинки по линии, проходящей через центр цветка и продолжающейся воль середины любого из лепестков или между ними. Это, однако, не все. Ведь лепестков-то много, и вдоль каждого лепестка можно обнаружить плоскость симметрии. Значит, этот цветок обладает многими плоскостями симметрии, и все они пересекаются в его центре. Сходным образом, можно охватить и геометрию подсолнечника, василька, колокольчика.

Все то, что растет и движется по вертикали, то есть вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии.

Этому всеобщему закону послушны не только растения, но и животные.

2.2 Обоснование причин симметрии у растений

Мною была проведена исследовательская работа, цель которой выяснить причины, обусловливающие симметрию в царстве растений. В две прозрачные трубки я поместил проростки бобов. Одну трубку расположил в горизонтальном положении, а другую - в вертикальном. Через неделю обнаружил, что, как только корень и стебель выросли за пределы горизонтально расположенной трубки, корень стал расти строго вниз, а стебель вверх. Я считаю, что рост корня вниз обусловлен земным притяжением; рост стебля вверх - влиянием света. Опыты, проводимые космонавтами на борту орбитальной станции в условиях невесомости, показали, что при отсутствии силы тяжести привычная пространственная ориентация у проростков нарушается. Следовательно, в условиях земного притяжения наличие симметрии позволяет растениям занять устойчивое положение.

Вывод: Чаще всего центральная симметрия встречается у цветковых и у голосеменных в листьях. У осевой симметрии наибольшее количество растений - это водоросли (корень и листья), зеленые мхи (корень, стебель, листья), хвощи (корень, стебель, листья), плауны (корень, стебель, листья), папоротники (корень, листья), голосеменные и цветковые. У зеркальной симметрии встречаются такие виды растений, как папоротники (листья), голосеменные (стебель, плоды) и цветковые.

Что же является основной причиной возникновения различной симметрии у растений? Это сила земного притяжения, или сила тяжести.

Изучение геометрии, биологии и физики в старших классах помогут мне более глубоко выяснить причины симметрии в природе, определить тип симметрии у любого растения.

Заключение

Трудно найти человека, который не имел бы какого-либо представления о симметрии, объясняющей наличие определенного порядка, закономерности в расположении частей окружающего мира. В каждом цветочке есть сходство с другими, но есть и различие.

Рассмотрев и изучив вышеизложенное на страницах реферата, я теперь могу утверждать: все, что растет по вертикали, то есть вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии; все то, что растет горизонтально или наклонно по отношению к земной поверхности подчиняется билатеральной симметрии. Так же я на практике доказал, что упорядоченность и пропорциональность растений обусловлена двумя факторами:

Земное притяжение;

Влияние света.

Знание геометрических законов природы имеют огромное практическое значение. Мы должны не только научиться понимать эти законы, но и заставлять служить их на пользу людям.

В своём реферате я больше внимания уделил симметрии живой природы, но это только малая часть, доступная для моего понимания. В дальнейшем я хотел бы изучить мир симметрии более глубоко.

Источники

1. Атанасян Л.С. Геометрия 7-9. М.: Просвещение, 2004. с. 110.

2. Атанасян Л.С. Геометрия 10-11. М.: Просвещение, 2007. с. 68.

3. Вернадский В.И.. Химическое строение биосферы Земли и ее окружения. М., 1965.

4. Вульф Г.В. Симметрия и ее проявления в природе. М., Изд. Отд. Нар. ком. Просвещение, 1991. с. 135.

5. Шубников А.В.. Симметрия. М., 1940.

6. Урманцев Ю.А. Симметрия в природе и природа симметрии. М., Мысль, 1974. с. 230.

7. Шафрановский И.И. Симметрия в природе. 2-е изд., перераб. Л.

8. http://kl10sch55.narod.ru/kl/sim.htm#_Toc157753210.

9. http://www.wikiznanie.ru/ru-wz/index.php/.

Размещено на Allbest.ru

...

Подобные документы

    Что такое симметрия, ее виды в геометрии: центральная (относительно точки), осевая (относительно прямой), зеркальная (относительно плоскости). Проявление симметрии в живой и неживой природе. Применение законов симметрии человеком в науке, быту, жизни.

    реферат , добавлен 14.03.2011

    Виды преобразования симметрии фигур. Понятие оси и плоскости симметрии. Одновременное применение преобразований поворота и отражения, зеркально-поворотная ось. Сопряженные элементы, подгруппы и общие свойства и классификация групп операций симметрии.

    реферат , добавлен 25.06.2009

    Центр инверсии: обозначение, пример отображения. Понятие о плоскости симметрии. Порядок оси симметрии, элементарный угол поворота. Физические причины отсутствия осей порядка более 6. Пространственные решетки, инверсионная ось, элементы континуума.

    презентация , добавлен 23.09.2013

    Понятие симметрии и особенности ее отражения в различных сферах: геометрии и биологии. Ее разновидности: центральная, осевая, зеркальная и вращения. Специфика и направления исследования симметрии в человеческом теле, природе, архитектуре, быту, физике.

    презентация , добавлен 13.12.2016

    Основные виды симметрии (центральная и осевая). Прямая в качестве оси симметрии фигуры. Примеры фигур, обладающих осевой симметрией. Симметричность относительно точки. Точка как центр симметрии фигуры. Примеры фигур, обладающих центральной симметрией.

    презентация , добавлен 30.10.2014

    Понятие отражательной и вращательной осевых симметрий в евклидовой геометрии и в естественных науках. Примеры осевой симметрии - бабочка, снежинка, Эйфелева башня, дворцы, лист крапивы. Зеркальное отражение, радиальная, аксиальная и лучевая симметрии.

    презентация , добавлен 17.12.2013

    Понятие симметрии в математике, ее виды: поступательная, вращательная, осевая, центральная. Примеры симметрии в биологии. Ее проявления в химии в геометрической конфигурации молекул. Симметрия в искусствах. Простейший пример физической симметрии.

    презентация , добавлен 14.05.2014

    Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация , добавлен 06.12.2011

    Понятие и свойства симметрии, ее типы: центральная и осевая, зеркальная и поворотная. Распространенность симметрии в живой природе. Гомотетия (преобразование подобие). Оценка роли и значения данного явления в химии, архитектуре, технических объектах.

    презентация , добавлен 04.12.2013

    Системы обозначения видов симметрии. Правила записи международного символа точечной группы. Теоремы к выбору кристаллографических осей, правила установки. Кристаллографические символы узлов, направлений и граней. Закон рациональности отношения параметров.

ВВЕДЕНИЕ: Проблеме симметрии посвящена поистине необозримая литература. Отучебников и научных монографий до произведений, апеллирующих не столько к чертежу и формуле, сколько к художественному образу, и сочетающих в себе научную достоверность с литературной отточенностью. В "Кратком Оксфордском словаре" симметрия определяется как "красота,обусловленная пропорциональностью частей тела или любого целого,равновесием, подобием, гармонией, согласованностью" (сам термин "симметрия" по-гречески означает "соразмерность", которую древние философы понимали как частный случай гармонии - согласования частей в рамках целого) . Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. С симметрией мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки. Что же такое симметрия? Почему симметрия буквально пронизывает весь окружающий нас мир? Существуют, в принципе, две группы симметрий. К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией. Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией. На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой - к их нарушению. Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, через понятие симметрии. «Симметрия, - пишет известный ученый Дж. Ньюмен, - устанавливает забавное и удивительное родство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...". Слово «симметрия» имеет двойственное толкование. В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей. Из этого высказывания следует, что Аристотель, пожалуй, был ближе всех к открытию одной из самых фундаментальных закономерностей Природы - закономерности о ее двойственности. Характерно, что к наиболее интересным результатам наука приходила именно тогда, когда устанавливались факты нарушения симметрии. Следствия, вытекающие из принципа симметрии, интенсивно разрабатывались физиками в прошлом веке и привели к ряду важных результатов. Такими следствиями законов симметрии являются, прежде всего, законы сохранения классической физики. В настоящее время в естествознании преобладают определения категорий симметрии и асимметрии на основании перечисления определенных признаков. Например, симметрия определяется как совокупность свойств: порядка, однородности, соразмерности, гармоничности. Все признаки симметрии во многих ее определениях рассматриваются равноправными, одинаково существенными, и в отдельных конкретных случаях, при установлении симметрии какого-то явления, можно пользоваться любым из них. Так, в одних случаях симметрия - это однородность, в других - соразмерность и т. д. То же самое можно сказать и о существующих в частных науках определениях асимметрии. ЗНАЧЕНИЕ СИММЕТРИИ В ПОЗНАНИИ ПРИРОДЫ Идея симметрии часто являлась отправным пунктом в гипотезах и теориях ученых прошлого. Вносимая симметрией упорядоченность проявляется, прежде всего, в ограничении многообразия возможных структур, в сокращении числа возможных вариантов. В качестве важного физического примера можно привести факт существования определяемых симметрией ограничений разнообразия структур молекул и кристаллов. Поясним эту мысль на следующем примере. Допустим, что в некоторой отдаленной галактике обитают высокоразвитые существа, увлекающиеся среди прочих занятий также играми. Мы можем ничего не знать о вкусах этих существ, о строении их тела и особенностях психики. Однако достоверно, что их игральные кости имеют одну из пяти форм - тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Всякая иная форма игральной кости в принципе исключена, поскольку требование равновероятности выпадения при игре любой грани предопределяет использование формы правильного многогранника, а таких форм только пять. Идея симметрии часто служила ученым путеводной нитью при рассмотрении проблем мироздания. Наблюдая хаотическую россыпь звезд на ночном небе, мы понимаем, что за внешним хаосом скрываются вполне симметричные спиральные структуры галактик, а в них - симметричные структуры планетных систем. Симметрия внешней формы кристалла является следствием ее внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов (молекул). Иначе говоря, симметрия кристалла связана с существованием пространственной решетки из атомов, так называемой кристаллической решетки. Согласно современной точке зрения, наиболее фундаментальные законы природы носят характер запретов. Они определяют, что может, а что не может происходить в природе. Так, законы сохранения в физике элементарных частиц являются законами запрета. Они запрещают любое явление, при котором изменялась бы "сохраняющаяся величина", являющаяся собственной «абсолютной» константой (собственным значением) соответствующего объекта и характеризующая его «вес» в системе других объектов. И эти значения являются абсолютными до тех пор, пока такой объект существует. В современной науке все законы сохранения рассматриваются именно как законы запрета. Так, в мире элементарных частиц многие законы сохранения получены как правила, запрещающие те явления, которые никогда не наблюдаются в экспериментах. Видный советский ученый академик В. И. Вернадский писал в 1927 году: "Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности". Действительно, всеобщность симметрии поразительна. Симметрия устанавливает внутренние связи между объектами и явлениями, которые внешне никак не связаны. Всеобщность симметрии не только в том, что она обнаруживается в разнообразных объектах и явлениях. Всеобщим является сам принцип симметрии, без которого по сути дела нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями. Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Следует выделить аспекты, без которых симметрия невозможна:

1) объект - носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д.

2) некоторые признаки - величины, свойства, отношения, процессы, явления - объекта, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными или инвариантами.

3)изменения (объекта), которые оставляют объект тождественным самому себе по инвариантным признакам; такие изменения называются преобразованиями симметрии;

4) свойство объекта превращаться по выделенным признакам в самого себя после соответствующих его изменений.

Важно подчеркнуть, что инвариант вторичен по отношению к изменению; покой относителен, движение абсолютно.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д. В связи с этим выделяют разные типы симметрии.

ПОВОРОТНАЯ СИММЕТРИЯ. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой при повороте на угол 2?/n, где n может равняться 2, 3, 4 и т.д. до бесконечности. Ось симметрии называется ось осью n-го порядка.

ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ . О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние а либо расстояние, кратное этой величине, она совмещается сама с собой.
Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние а - элементарным переносом или периодом. С данным типом симметрии связано понятие периодических структур или решеток, которые могут быть и плоскими, и пространственными.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение.

Я иногда невольно задалась вопросом: а нет ли чего-то общего в формах растений, животных? Возможно, существует какая-то закономерность, какие-то причины, придающие такое неожиданное сходство самым разнообразным листьям, цветам, животным? Кроме того, когда папа мне рассказывал кое-что о животных, он упомянул, что симметричным быть очень удобно. Так, если у вас со всех сторон есть глаза, уши, носы, рты и конечности, то вы успеете вовремя почувствовать что-то подозрительное, с какой бы стороны оно ни подкрадывалось, и, в зависимости от того, какое оно, это подозрительное, — съесть его или, наоборот, от него удрать.

На уроках биологии я выяснила, что базовое свойство большинства живых существ является симметрия. Возможно, именно законами симметрии можно объяснить такую похожесть в листьях, цветах, животном мире.

Целью моей работы будет определение роли симметрии в живой и неживой природе.

Для достижения цели исследования необходимо реализовать следующие задачи:

    познакомиться подробнее с понятием симметрии;

    найти подтверждение существования симметрии в природе;

    подготовить презентацию;

    представить презентацию.

Теоретическая часть.

    1. Основные понятия о симметрии

К слову «симметрия» мы привыкаем с детства, и кажется, что в этом ясном понятии ничего загадочного быть не может. Законам симметрии подчиняются все формы на свете. Даже «вечно свободные» облака обладают симметрией, хотя и искаженной. Замирая на голубом небе, они напоминают медленно движущихся в морской воде медуз, явно тяготея к поворотной симметрии, а потом, гонимые поднявшимся ветерком, меняют симметрию на зеркальную.

Проблеме симметрии посвящено поистине необозримо много литературы. От учебников и научных монографий до произведений, апеллирующих не столько к чертежу и формуле, сколько к художественному образу, и сочетающих в себе научную достоверность с литературной отточенностью.

Понятие симметрии исторически вырастает из эстетических представлений. Она широко проявляется в наскальных рисунках, первобытных изделиях труда и быта, что свидетельствует о ее древности.

Понятие симметрии берет начало с Древней Греции. Оно впервые были введено в V в. до н. э. скульптором Пифагором из Региума, который понимал под симметрией красоту человеческого тела и красоту вообще, а отклонение от симметрии определил термином «асимметрия». В трудах древнегреческих философов (пифагорейцев, Платона, Аристотеля) чаще встречаются понятия «гармония», «пропорция», чем «симметрия».

Существует множество определений симметрии:

      • словарь иностранных слов: «Симметрия - [греч. symmetria] - полное зеркальное соответствие в расположении частей целого относительно средней линии, центра; соразмерность»;

        краткий Оксфордский словарь: «Симметрия - красота, обусловленная пропорциональностью частей тела или любого целого, равновесием, подобием, гармонией, согласованностью»;

        словарь С. И. Ожегова: «Симметрия - соразмерность, пропорциональность частей чего-нибудь, расположенных по обе стороны от середины, центра»;

        «Химическое строение биосферы Земли и ее окружения» В. И. Вернадского: «В науках о природе симметрия есть выражение геометрически пространственных правильностей, эмпирически наблюдаемых в природных телах и явлениях. Она, следовательно, проявляется, очевидно, не только в пространстве, но и на плоскости и на линии».

Но наиболее полным и обобщающим все вышеперечисленные определения мне кажется мнение Ю. А. Урманцева: «Симметрией называется всякая фигура, которая может совмещаться сама с собой в результате одного или нескольких последовательно произведенных отражений в плоскостях.»

Слово «симметрия» имеет двойственное толкование.

В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое.

Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей. Из этого высказывания следует, что Аристотель, пожалуй, был ближе всех к открытию одной из самых фундаментальных закономерностей Природы - закономерности о ее двойственности. Первоначальное понятие о геометрической симметрии как о гармонии пропорций, как о «соразмерности», что и означает в переводе с греческого слово «симметрия», с течением времени приобрело универсальный характер и было осознано как всеобщая идея инвариантности (т. е. неизменности) относительно некоторых преобразований. Таким образом, геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными. Равенство и одинаковость расположения частей фигуры выявляют посредством операций симметрии. Операциями симметрии называют повороты, переносы, отражения.

    1. Симметрия в геометрии

2.1 Симметрия геометрических фигур (тел) .

Зеркальная симметрия. Геометрическая фигура (рис. 1) называется симметричной относительно плоскости S, если для каждой точки E этой фигуры может быть найдена точка E’ этой же фигуры, так что отрезок EE’ перпендикулярен плоскости S и делится этой плоскостью пополам (EA = AE). Плоскость S называется плоскостью симметрии. Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова (например, левая перчатка не подходит для правой руки и наоборот). Они называются зеркально равными.

Центральная симметрия. Геометрическая фигура (рис. 2) называется симметричной относительно центра C , если для каждой точки A этой фигуры может быть найдена точка E этой же фигуры, так что отрезок AE проходит через центр C и делится в этой точке пополам (AC = CE). Точка C называется центром симметрии.

Симметрия вращения. Тело (рис. 3) обладает симметрией вращения, если при повороте на угол 360°/n (здесь n - целое число) вокруг некоторой прямой AB (оси симметрии) оно полностью совпадает со своим начальным положением. При n = 2 мы имеем осевую симметрию. Треугольники имеют также осевую симметрию.

Примеры вышеупомянутых видов симметрии (рис. 4).

Шар (сфера) обладает и центральной, и зеркальной, и симметрией вращения. Центром симметрии является центр шара; плоскостью симметрии является плоскость любого большого круга; осью симметрии - диаметр шара.

Круглый конус обладает осевой симметрией; ось симметрии - ось конуса.

Прямая призма обладает зеркальной симметрией. Плоскость симметрии параллельна её основаниям и расположена на одинаковом расстоянии между ними.

2.2 Симметрия плоских фигур .

Зеркально-осевая симметрия. Если плоская фигура ABCDE (рис. 5 справа) симметрична относительно плоскости S (что возможно, если только плоская фигура перпендикулярна плоскости S), то прямая KL, по которой эти плоскости пересекаются, является осью симметрии второго порядка фигуры ABCDE. В этом случае фигура ABCDE называется зеркально-симметричной.

Центральная симметрия. Если плоская фигура ABCDEF имеет ось симметрии второго порядка, перпендикулярную плоскости фигуры - прямая MN (рис. 5 слева), то точка O, в которой пересекаются прямая MN и плоскость фигуры ABCDEF, является центром симметрии.

Примеры симметрии плоских фигур (рис. 6).

Параллелограмм имеет только центральную симметрию. Его центр симметрии - точка пересечения диагоналей.

Равнобочная трапеция имеет только осевую симметрию. Её ось симметрии - перпендикуляр, проведенный через середины оснований трапеции.

Ромб имеет и центральную, и осевую симметрию. Его ось симметрии - любая из его диагоналей; центр симметрии - точка их пересечения.

    1. Виды симметрии в природе

Самая безупречная, «самая симметричная» из всех симметрий — сферическая, когда у тела не отличаются верхняя, нижняя, правая, левая, передняя и задняя части, и оно совпадает само с собой при повороте вокруг центра симметрии на любой угол. Однако это возможно только в такой среде, которая сама идеально симметрична во всех направлениях и в которой со всех сторон на тело действуют одни и те же силы. Но на нашей земле подобной среды нет. Существует по крайней мере одна сила — сила тяжести, — которая действует только по одной оси (верх-низ) и не влияет на остальные (вперед-назад, вправо-влево). Она всё тянет вниз. И живым существам приходится к этому приспосабливаться.

Так возникает следующий тип симметрии — радиальная. У радиально-симметричных существ есть верхняя и нижняя части, но правой и левой, передней и задней нет. Они совпадают сами с собой при вращении только вокруг одной оси. К ним относятся, например, морские звезды и гидры. Эти создания малоподвижны и занимаются «тихой охотой» за проплывающей мимо живностью. Радиальная симметрия присуща медузам и полипам, поперечным разрезам плодов яблок, лимонов, апельсинов, хурмы (рис. 7) и т. д

Но если какое-то существо собирается вести активный образ жизни, гоняясь за жертвами и удирая от хищников, для него приобретает важность еще одно направление — передне-заднее. Та часть тела, которая находится впереди, когда животное двигается, становится более значимой. Сюда «переползают» все органы чувств, а заодно и нервные узлы, которые анализируют полученную от органов чувств информацию (у некоторых счастливчиков эти узлы потом превратятся в головной мозг). К тому же, спереди должен находиться рот, чтобы успеть ухватить настигнутую добычу. Всё это обычно располагается на отдельном участке тела — голове (у радиально-симметричных животных головы нет в принципе). Так возникает билатеральная (или двусторонняя) симметрия. У билатерально-симметричного существа отличаются верхняя и нижняя, передняя и задняя части, и только правая и левая идентичны и являются зеркальным отображением друг друга. В неживой природе этот вид симметрии не имеет преобладающего значения, но зато чрезвычайно богато представлен в живой природе (рис. 8).

У некоторых животных, например у кольчатых червей, помимо билатеральной есть и еще одна симметрия — метамерная . Их тело (за исключением самой передней части) состоит из одинаковых члеников-метамеров, и если сдвигаться вдоль тела, червь сам с собой «совпадает». У более развитых животных, включая человека, сохраняется слабое «эхо» такой симметрии: в каком-то смысле, наши позвонки и рёбра тоже можно назвать метамерами (рис. 9).

Итак, согласно многочисленным литературным данным в природе действуют законы симметрии, которые обеспечивают её красоту и гармонию, и объясняются действием естественного отбора.

Я подошла к зеркалу и увидела, что у меня две руки, две ноги, два уха, два глаза, которые расположены зеркально-симметрично. Но когда я пригляделась к себе, то заметила, что один глаз чуточку больше прищурен, другой меньше, одна бровь изогнута более, другая — менее; одно ухо выше, другое ниже, большой палец левой руки чуть меньше пальца правой. Так есть ли симметрия в природе и можно ли её измерить, а не просто оценить визуально «на глазок»? А может быть существуют единицы измерения симметрии?

Практическая часть.

    Описание методики сбора и обработки данных

Для проведении исследования по доказательству наличия и измерению симметрии живых организмов (по совету папы) была использована методика «Оценка экологического состояния леса по асимметрии листьев», разработанная группой ученых Калужского государственного педагогического университета имени К. Э. Циолковского. В качестве объекта исследования авторы методики используют листья берёзы.

Исследования были проведены 19 сентября 2016 года. Во дворе моего дома растут березы: пять взрослых высоких деревьев. С каждого дерева я собрала по десять листьев (рис. 10). Материал был обработан сразу после сбора.

Для измерения я складывала лист поперек, пополам, прикладывая макушку листа к основанию, потом разгибала и по образовавшейся складке производила измерения (рис. 12).

1 - ширина половинки листа (считая от макушки листа к основанию);

2 - длина второй жилки второго порядка от основания листа;

3 - расстояние между основаниями первой и второй жилок второго порядка;

4 - расстояние между концами этих жилок.

Данные измерений я заносила в таблицу в программе excel, чтобы затем было проще обработать данные.

    Вычисление среднего относительного различия признака

Величину симметричности я оценивала с помощью интегрального показателя - величины среднего относительного различия признака (среднее арифметическое отношение разности к сумме промеров листа слева и справа, отнесенное к числу признаков).

С помощью программе excel в первом действии я находила относительное различие между значениями каждого признака слева и справа - Yi: находила разность значений измерений по одному признаку для каждого листа, затем сумму этих же значений и разность делила на сумму.

Yi = (Xл - Хп) : (Xл + Хп);

Найденные значения по каждому признаку Y1- Y4 вписывала в таблицу.

Во втором действии я находила значение среднего относительного различия между сторонами на признак для каждого листа (Z). Для этого сумму относительных различий делила на число признаков.

Y1 + Y2 + Y3 + Y4

Z1 = ________________________________,

где N - число признаков. В моем случае N = 4.

Подобные вычисления производила для каждого листа, а значения заносила в таблицу.

В третьем действии я вычисляла среднее относительное различие на признак для всей выборки (Х). Для этого все значения Z складывала и делила на число этих значений:

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10

X = ____________________________________________ ,

где n - число значений Z, т.е. число листьев (в нашем примере - 10).

Полученный показатель Х характеризует степень симметричности организма.

Для определения наличия симметричности я использовала рекомендованную в методике шкалу, в которой 1 балл - условная норма и наличие симметрии, а 5 балл - критическое отклонение от норы симметрии.

Сводная таблица данных.

№ дерева

1. Ширина половинок листа, мм

2. Длина 2-й жилки, мм

3. Расстояние между основаниями 1-й и 2-й жилок, мм

4. Расстояние между концами 1-й и 2-й жилок, мм

    Результаты исследования

Номер дерева

Значение показателя (Х)

Симметричность

Из представленной таблицы данных и диаграммы (рис. 13) видно, что все значения оказались в диапазоне до 0,055, что соответствует норме по шкале симметричности. Таким образом, все пять берез в моем дворе имели симметричные листья.

Заключение.

В результате моего исследования я убедилась, что симметрия в природе существует и её можно измерить.

СПИСОК ЛИТЕРАТУРЫ

    Демьяненко Т. В. «Симметрия в природе», Украина.

    Захаров В. М., Баранов А.С., Борисов В.И., Валецкий А.В., Кряжева Н.Г., Чистякова Е.К., Чубинишвили А.Т. Здоровье среды: методика оценки. - М., Центр экологической политики России, 2000.

    Рослова Л.О., Шарыгин И.Ф. Симметрия: Учебное пособие, М.: Изд-во гимназии «Открытый мир», 1995.

    Детская энциклопедия для среднего и старшего возраста т.3.- М.: Издательство Академии Педагогических Наук РСФСР, 1959.

    Я познаю мир: Детская энциклопедия: Математика / Сост. А.П. Савин, В.В. Станцо, А.Ю. Котова: Под общ.ред. О.Г. Хинн. - М.: ООО «Издательство АСТ - ЛТД», 1998.

    И.Ф. Шарыгин, Л.Н. Ерганжиева Наглядная геометрия 5-6 классы. - М.: Дрофа, 2005.

    Большая компьютерная энциклопедия Кирилла и Мефодия.

    Андрущенко А.В. Развитие пространственного воображения на уроках математики. М.: Владос, 2003.

    Иванова О. Интегрированный урок «Этот симметричный мир»// газета Математика. 2006. №6 с.32-36.

    Ожегов С.И. Толковый словарь русского языка. М. 1997.

    Вульф Г.В. Симметрия и ее проявления в природе. М., Изд. Отд. Нар. ком. Просвещение, 1991. с. 135.

    Шубников А.В.. Симметрия. М., 1940.

    http://kl10sch55.narod.ru/kl/sim.htm#_Toc157753210

    http://www.wikiznanie.ru/ru-wz/index.php/